Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlcmet.x | |- X = ( BaseSet ` U ) | |
| hlcmet.8 | |- D = ( IndMet ` U ) | ||
| Assertion | hlcmet | |- ( U e. CHilOLD -> D e. ( CMet ` X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlcmet.x | |- X = ( BaseSet ` U ) | |
| 2 | hlcmet.8 | |- D = ( IndMet ` U ) | |
| 3 | hlobn | |- ( U e. CHilOLD -> U e. CBan ) | |
| 4 | 1 2 | cbncms | |- ( U e. CBan -> D e. ( CMet ` X ) ) | 
| 5 | 3 4 | syl | |- ( U e. CHilOLD -> D e. ( CMet ` X ) ) |