Metamath Proof Explorer
		
		
		
		Description:  The induced metric on a complex Hilbert space is complete.  (Contributed by NM, 8-Sep-2007)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | hlcmet.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
					
						|  |  | hlcmet.8 | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
				
					|  | Assertion | hlcmet | ⊢  ( 𝑈  ∈  CHilOLD  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlcmet.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | hlcmet.8 | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 3 |  | hlobn | ⊢ ( 𝑈  ∈  CHilOLD  →  𝑈  ∈  CBan ) | 
						
							| 4 | 1 2 | cbncms | ⊢ ( 𝑈  ∈  CBan  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑈  ∈  CHilOLD  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) |