Description: Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hldi.1 | |- X = ( BaseSet ` U ) | |
| hldi.2 | |- G = ( +v ` U ) | ||
| hldi.4 | |- S = ( .sOLD ` U ) | ||
| Assertion | hldir | |- ( ( U e. CHilOLD /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A + B ) S C ) = ( ( A S C ) G ( B S C ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hldi.1 | |- X = ( BaseSet ` U ) | |
| 2 | hldi.2 | |- G = ( +v ` U ) | |
| 3 | hldi.4 | |- S = ( .sOLD ` U ) | |
| 4 | hlnv | |- ( U e. CHilOLD -> U e. NrmCVec ) | |
| 5 | 1 2 3 | nvdir | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A + B ) S C ) = ( ( A S C ) G ( B S C ) ) ) | 
| 6 | 4 5 | sylan | |- ( ( U e. CHilOLD /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A + B ) S C ) = ( ( A S C ) G ( B S C ) ) ) |