| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhillvec.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hlhillvec.u |
|- U = ( ( HLHil ` K ) ` W ) |
| 3 |
|
hlhillvec.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 4 |
|
hlhildrng.r |
|- R = ( Scalar ` U ) |
| 5 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
| 6 |
|
eqid |
|- ( Scalar ` ( ( DVecH ` K ) ` W ) ) = ( Scalar ` ( ( DVecH ` K ) ` W ) ) |
| 7 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
| 8 |
|
eqid |
|- ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
| 9 |
|
eqid |
|- ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
| 10 |
|
eqid |
|- ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
hlhilsrnglem |
|- ( ph -> R e. *Ring ) |