Metamath Proof Explorer


Theorem hlhilsrng

Description: The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 21-Jun-2015)

Ref Expression
Hypotheses hlhillvec.h
|- H = ( LHyp ` K )
hlhillvec.u
|- U = ( ( HLHil ` K ) ` W )
hlhillvec.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hlhildrng.r
|- R = ( Scalar ` U )
Assertion hlhilsrng
|- ( ph -> R e. *Ring )

Proof

Step Hyp Ref Expression
1 hlhillvec.h
 |-  H = ( LHyp ` K )
2 hlhillvec.u
 |-  U = ( ( HLHil ` K ) ` W )
3 hlhillvec.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
4 hlhildrng.r
 |-  R = ( Scalar ` U )
5 eqid
 |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W )
6 eqid
 |-  ( Scalar ` ( ( DVecH ` K ) ` W ) ) = ( Scalar ` ( ( DVecH ` K ) ` W ) )
7 eqid
 |-  ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) )
8 eqid
 |-  ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) )
9 eqid
 |-  ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) )
10 eqid
 |-  ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W )
11 1 2 3 4 5 6 7 8 9 10 hlhilsrnglem
 |-  ( ph -> R e. *Ring )