Step |
Hyp |
Ref |
Expression |
1 |
|
hlhillvec.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhillvec.u |
|- U = ( ( HLHil ` K ) ` W ) |
3 |
|
hlhillvec.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
4 |
|
hlhildrng.r |
|- R = ( Scalar ` U ) |
5 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
6 |
|
eqid |
|- ( Scalar ` ( ( DVecH ` K ) ` W ) ) = ( Scalar ` ( ( DVecH ` K ) ` W ) ) |
7 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
8 |
|
eqid |
|- ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
9 |
|
eqid |
|- ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
10 |
|
eqid |
|- ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
hlhilsrnglem |
|- ( ph -> R e. *Ring ) |