| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhillvec.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hlhillvec.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hlhillvec.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 4 |
|
hlhildrng.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 5 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 8 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 9 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 10 |
|
eqid |
⊢ ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
hlhilsrnglem |
⊢ ( 𝜑 → 𝑅 ∈ *-Ring ) |