Metamath Proof Explorer


Theorem hlhilsrng

Description: The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 21-Jun-2015)

Ref Expression
Hypotheses hlhillvec.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhillvec.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhillvec.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhildrng.r 𝑅 = ( Scalar ‘ 𝑈 )
Assertion hlhilsrng ( 𝜑𝑅 ∈ *-Ring )

Proof

Step Hyp Ref Expression
1 hlhillvec.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhillvec.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
3 hlhillvec.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
4 hlhildrng.r 𝑅 = ( Scalar ‘ 𝑈 )
5 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
7 eqid ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
8 eqid ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
9 eqid ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
10 eqid ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
11 1 2 3 4 5 6 7 8 9 10 hlhilsrnglem ( 𝜑𝑅 ∈ *-Ring )