Step |
Hyp |
Ref |
Expression |
1 |
|
hlhillvec.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhillvec.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhillvec.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
4 |
|
hlhildrng.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
5 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
8 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
9 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
10 |
|
eqid |
⊢ ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
hlhilsrnglem |
⊢ ( 𝜑 → 𝑅 ∈ *-Ring ) |