Description: Hilbert space scalar multiplication associative law. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlmulf.1 | |- X = ( BaseSet ` U ) | |
| hlmulf.4 | |- S = ( .sOLD ` U ) | ||
| Assertion | hlmulass | |- ( ( U e. CHilOLD /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlmulf.1 | |- X = ( BaseSet ` U ) | |
| 2 | hlmulf.4 | |- S = ( .sOLD ` U ) | |
| 3 | hlnv | |- ( U e. CHilOLD -> U e. NrmCVec ) | |
| 4 | 1 2 | nvsass | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) | 
| 5 | 3 4 | sylan | |- ( ( U e. CHilOLD /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) |