Metamath Proof Explorer


Theorem hlpar

Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlpar.1
|- X = ( BaseSet ` U )
hlpar.2
|- G = ( +v ` U )
hlpar.4
|- S = ( .sOLD ` U )
hlpar.6
|- N = ( normCV ` U )
Assertion hlpar
|- ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 hlpar.1
 |-  X = ( BaseSet ` U )
2 hlpar.2
 |-  G = ( +v ` U )
3 hlpar.4
 |-  S = ( .sOLD ` U )
4 hlpar.6
 |-  N = ( normCV ` U )
5 hlph
 |-  ( U e. CHilOLD -> U e. CPreHilOLD )
6 1 2 3 4 phpar
 |-  ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) )
7 5 6 syl3an1
 |-  ( ( U e. CHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) )