Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007) (Revised by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlphl | |- ( W e. CHil -> W e. PreHil ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlcph | |- ( W e. CHil -> W e. CPreHil ) | |
| 2 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) | |
| 3 | 1 2 | syl | |- ( W e. CHil -> W e. PreHil ) |