Description: Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvmulcom.1 | |- A e. CC | |
| hvmulcom.2 | |- B e. CC | ||
| hvmulcom.3 | |- C e. ~H | ||
| Assertion | hvmul2negi | |- ( -u A .h ( -u B .h C ) ) = ( A .h ( B .h C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hvmulcom.1 | |- A e. CC | |
| 2 | hvmulcom.2 | |- B e. CC | |
| 3 | hvmulcom.3 | |- C e. ~H | |
| 4 | 1 2 | mul2negi | |- ( -u A x. -u B ) = ( A x. B ) | 
| 5 | 4 | oveq1i | |- ( ( -u A x. -u B ) .h C ) = ( ( A x. B ) .h C ) | 
| 6 | 1 | negcli | |- -u A e. CC | 
| 7 | 2 | negcli | |- -u B e. CC | 
| 8 | 6 7 3 | hvmulassi | |- ( ( -u A x. -u B ) .h C ) = ( -u A .h ( -u B .h C ) ) | 
| 9 | 1 2 3 | hvmulassi | |- ( ( A x. B ) .h C ) = ( A .h ( B .h C ) ) | 
| 10 | 5 8 9 | 3eqtr3i | |- ( -u A .h ( -u B .h C ) ) = ( A .h ( B .h C ) ) |