Metamath Proof Explorer


Theorem hvmulassi

Description: Scalar multiplication associative law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvmulcom.1
|- A e. CC
hvmulcom.2
|- B e. CC
hvmulcom.3
|- C e. ~H
Assertion hvmulassi
|- ( ( A x. B ) .h C ) = ( A .h ( B .h C ) )

Proof

Step Hyp Ref Expression
1 hvmulcom.1
 |-  A e. CC
2 hvmulcom.2
 |-  B e. CC
3 hvmulcom.3
 |-  C e. ~H
4 ax-hvmulass
 |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A x. B ) .h C ) = ( A .h ( B .h C ) ) )
5 1 2 3 4 mp3an
 |-  ( ( A x. B ) .h C ) = ( A .h ( B .h C ) )