Description: Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvmulcom.1 | |- A e. CC | |
| hvmulcom.2 | |- B e. CC | ||
| hvmulcom.3 | |- C e. ~H | ||
| Assertion | hvmulcomi | |- ( A .h ( B .h C ) ) = ( B .h ( A .h C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hvmulcom.1 | |- A e. CC | |
| 2 | hvmulcom.2 | |- B e. CC | |
| 3 | hvmulcom.3 | |- C e. ~H | |
| 4 | hvmulcom | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( A .h ( B .h C ) ) = ( B .h ( A .h C ) ) ) | |
| 5 | 1 2 3 4 | mp3an | |- ( A .h ( B .h C ) ) = ( B .h ( A .h C ) ) |