Metamath Proof Explorer
		
		
		
		Description:  Scalar multiplication commutative law.  (Contributed by NM, 3-Sep-1999)
       (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | hvmulcom.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | hvmulcom.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | hvmulcom.3 | ⊢ 𝐶  ∈   ℋ | 
				
					|  | Assertion | hvmulcomi | ⊢  ( 𝐴  ·ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  ( 𝐵  ·ℎ  ( 𝐴  ·ℎ  𝐶 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvmulcom.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | hvmulcom.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | hvmulcom.3 | ⊢ 𝐶  ∈   ℋ | 
						
							| 4 |  | hvmulcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  ( 𝐵  ·ℎ  ( 𝐴  ·ℎ  𝐶 ) ) ) | 
						
							| 5 | 1 2 3 4 | mp3an | ⊢ ( 𝐴  ·ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  ( 𝐵  ·ℎ  ( 𝐴  ·ℎ  𝐶 ) ) |