| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | iccpartxr.i |  |-  ( ph -> I e. ( 0 ... M ) ) | 
						
							| 4 |  | iccpart |  |-  ( M e. NN -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) | 
						
							| 5 | 1 4 | syl |  |-  ( ph -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) | 
						
							| 6 | 2 5 | mpbid |  |-  ( ph -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) | 
						
							| 7 | 6 | simpld |  |-  ( ph -> P e. ( RR* ^m ( 0 ... M ) ) ) | 
						
							| 8 |  | elmapi |  |-  ( P e. ( RR* ^m ( 0 ... M ) ) -> P : ( 0 ... M ) --> RR* ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> P : ( 0 ... M ) --> RR* ) | 
						
							| 10 | 9 3 | ffvelcdmd |  |-  ( ph -> ( P ` I ) e. RR* ) |