| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartgtprec.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | iccpartgtprec.i |  |-  ( ph -> I e. ( 1 ... M ) ) | 
						
							| 4 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 5 |  | fzval3 |  |-  ( M e. ZZ -> ( 1 ... M ) = ( 1 ..^ ( M + 1 ) ) ) | 
						
							| 6 | 5 | eleq2d |  |-  ( M e. ZZ -> ( I e. ( 1 ... M ) <-> I e. ( 1 ..^ ( M + 1 ) ) ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> ( I e. ( 1 ... M ) <-> I e. ( 1 ..^ ( M + 1 ) ) ) ) | 
						
							| 8 | 3 7 | mpbid |  |-  ( ph -> I e. ( 1 ..^ ( M + 1 ) ) ) | 
						
							| 9 | 1 | nncnd |  |-  ( ph -> M e. CC ) | 
						
							| 10 |  | pncan1 |  |-  ( M e. CC -> ( ( M + 1 ) - 1 ) = M ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> ( ( M + 1 ) - 1 ) = M ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ph -> M = ( ( M + 1 ) - 1 ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( ph -> ( 0 ..^ M ) = ( 0 ..^ ( ( M + 1 ) - 1 ) ) ) | 
						
							| 14 | 13 | eleq2d |  |-  ( ph -> ( ( I - 1 ) e. ( 0 ..^ M ) <-> ( I - 1 ) e. ( 0 ..^ ( ( M + 1 ) - 1 ) ) ) ) | 
						
							| 15 | 3 | elfzelzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 16 | 4 | peano2zd |  |-  ( ph -> ( M + 1 ) e. ZZ ) | 
						
							| 17 |  | elfzom1b |  |-  ( ( I e. ZZ /\ ( M + 1 ) e. ZZ ) -> ( I e. ( 1 ..^ ( M + 1 ) ) <-> ( I - 1 ) e. ( 0 ..^ ( ( M + 1 ) - 1 ) ) ) ) | 
						
							| 18 | 15 16 17 | syl2anc |  |-  ( ph -> ( I e. ( 1 ..^ ( M + 1 ) ) <-> ( I - 1 ) e. ( 0 ..^ ( ( M + 1 ) - 1 ) ) ) ) | 
						
							| 19 | 14 18 | bitr4d |  |-  ( ph -> ( ( I - 1 ) e. ( 0 ..^ M ) <-> I e. ( 1 ..^ ( M + 1 ) ) ) ) | 
						
							| 20 | 8 19 | mpbird |  |-  ( ph -> ( I - 1 ) e. ( 0 ..^ M ) ) | 
						
							| 21 |  | iccpartimp |  |-  ( ( M e. NN /\ P e. ( RePart ` M ) /\ ( I - 1 ) e. ( 0 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` ( I - 1 ) ) < ( P ` ( ( I - 1 ) + 1 ) ) ) ) | 
						
							| 22 | 1 2 20 21 | syl3anc |  |-  ( ph -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` ( I - 1 ) ) < ( P ` ( ( I - 1 ) + 1 ) ) ) ) | 
						
							| 23 | 22 | simprd |  |-  ( ph -> ( P ` ( I - 1 ) ) < ( P ` ( ( I - 1 ) + 1 ) ) ) | 
						
							| 24 | 15 | zcnd |  |-  ( ph -> I e. CC ) | 
						
							| 25 |  | npcan1 |  |-  ( I e. CC -> ( ( I - 1 ) + 1 ) = I ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> ( ( I - 1 ) + 1 ) = I ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ph -> I = ( ( I - 1 ) + 1 ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ph -> ( P ` I ) = ( P ` ( ( I - 1 ) + 1 ) ) ) | 
						
							| 29 | 23 28 | breqtrrd |  |-  ( ph -> ( P ` ( I - 1 ) ) < ( P ` I ) ) |