Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
|- ( ph -> M e. NN ) |
2 |
|
iccpartgtprec.p |
|- ( ph -> P e. ( RePart ` M ) ) |
3 |
|
iccpartgtprec.i |
|- ( ph -> I e. ( 1 ... M ) ) |
4 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
5 |
|
fzval3 |
|- ( M e. ZZ -> ( 1 ... M ) = ( 1 ..^ ( M + 1 ) ) ) |
6 |
5
|
eleq2d |
|- ( M e. ZZ -> ( I e. ( 1 ... M ) <-> I e. ( 1 ..^ ( M + 1 ) ) ) ) |
7 |
4 6
|
syl |
|- ( ph -> ( I e. ( 1 ... M ) <-> I e. ( 1 ..^ ( M + 1 ) ) ) ) |
8 |
3 7
|
mpbid |
|- ( ph -> I e. ( 1 ..^ ( M + 1 ) ) ) |
9 |
1
|
nncnd |
|- ( ph -> M e. CC ) |
10 |
|
pncan1 |
|- ( M e. CC -> ( ( M + 1 ) - 1 ) = M ) |
11 |
9 10
|
syl |
|- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
12 |
11
|
eqcomd |
|- ( ph -> M = ( ( M + 1 ) - 1 ) ) |
13 |
12
|
oveq2d |
|- ( ph -> ( 0 ..^ M ) = ( 0 ..^ ( ( M + 1 ) - 1 ) ) ) |
14 |
13
|
eleq2d |
|- ( ph -> ( ( I - 1 ) e. ( 0 ..^ M ) <-> ( I - 1 ) e. ( 0 ..^ ( ( M + 1 ) - 1 ) ) ) ) |
15 |
3
|
elfzelzd |
|- ( ph -> I e. ZZ ) |
16 |
4
|
peano2zd |
|- ( ph -> ( M + 1 ) e. ZZ ) |
17 |
|
elfzom1b |
|- ( ( I e. ZZ /\ ( M + 1 ) e. ZZ ) -> ( I e. ( 1 ..^ ( M + 1 ) ) <-> ( I - 1 ) e. ( 0 ..^ ( ( M + 1 ) - 1 ) ) ) ) |
18 |
15 16 17
|
syl2anc |
|- ( ph -> ( I e. ( 1 ..^ ( M + 1 ) ) <-> ( I - 1 ) e. ( 0 ..^ ( ( M + 1 ) - 1 ) ) ) ) |
19 |
14 18
|
bitr4d |
|- ( ph -> ( ( I - 1 ) e. ( 0 ..^ M ) <-> I e. ( 1 ..^ ( M + 1 ) ) ) ) |
20 |
8 19
|
mpbird |
|- ( ph -> ( I - 1 ) e. ( 0 ..^ M ) ) |
21 |
|
iccpartimp |
|- ( ( M e. NN /\ P e. ( RePart ` M ) /\ ( I - 1 ) e. ( 0 ..^ M ) ) -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` ( I - 1 ) ) < ( P ` ( ( I - 1 ) + 1 ) ) ) ) |
22 |
1 2 20 21
|
syl3anc |
|- ( ph -> ( P e. ( RR* ^m ( 0 ... M ) ) /\ ( P ` ( I - 1 ) ) < ( P ` ( ( I - 1 ) + 1 ) ) ) ) |
23 |
22
|
simprd |
|- ( ph -> ( P ` ( I - 1 ) ) < ( P ` ( ( I - 1 ) + 1 ) ) ) |
24 |
15
|
zcnd |
|- ( ph -> I e. CC ) |
25 |
|
npcan1 |
|- ( I e. CC -> ( ( I - 1 ) + 1 ) = I ) |
26 |
24 25
|
syl |
|- ( ph -> ( ( I - 1 ) + 1 ) = I ) |
27 |
26
|
eqcomd |
|- ( ph -> I = ( ( I - 1 ) + 1 ) ) |
28 |
27
|
fveq2d |
|- ( ph -> ( P ` I ) = ( P ` ( ( I - 1 ) + 1 ) ) ) |
29 |
23 28
|
breqtrrd |
|- ( ph -> ( P ` ( I - 1 ) ) < ( P ` I ) ) |