| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartgtprec.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | iccpartgtprec.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 4 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | fzval3 | ⊢ ( 𝑀  ∈  ℤ  →  ( 1 ... 𝑀 )  =  ( 1 ..^ ( 𝑀  +  1 ) ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝐼  ∈  ( 1 ... 𝑀 )  ↔  𝐼  ∈  ( 1 ..^ ( 𝑀  +  1 ) ) ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( 1 ... 𝑀 )  ↔  𝐼  ∈  ( 1 ..^ ( 𝑀  +  1 ) ) ) ) | 
						
							| 8 | 3 7 | mpbid | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ..^ ( 𝑀  +  1 ) ) ) | 
						
							| 9 | 1 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 10 |  | pncan1 | ⊢ ( 𝑀  ∈  ℂ  →  ( ( 𝑀  +  1 )  −  1 )  =  𝑀 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 )  −  1 )  =  𝑀 ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( 𝜑  →  𝑀  =  ( ( 𝑀  +  1 )  −  1 ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ 𝑀 )  =  ( 0 ..^ ( ( 𝑀  +  1 )  −  1 ) ) ) | 
						
							| 14 | 13 | eleq2d | ⊢ ( 𝜑  →  ( ( 𝐼  −  1 )  ∈  ( 0 ..^ 𝑀 )  ↔  ( 𝐼  −  1 )  ∈  ( 0 ..^ ( ( 𝑀  +  1 )  −  1 ) ) ) ) | 
						
							| 15 | 3 | elfzelzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 16 | 4 | peano2zd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℤ ) | 
						
							| 17 |  | elfzom1b | ⊢ ( ( 𝐼  ∈  ℤ  ∧  ( 𝑀  +  1 )  ∈  ℤ )  →  ( 𝐼  ∈  ( 1 ..^ ( 𝑀  +  1 ) )  ↔  ( 𝐼  −  1 )  ∈  ( 0 ..^ ( ( 𝑀  +  1 )  −  1 ) ) ) ) | 
						
							| 18 | 15 16 17 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( 1 ..^ ( 𝑀  +  1 ) )  ↔  ( 𝐼  −  1 )  ∈  ( 0 ..^ ( ( 𝑀  +  1 )  −  1 ) ) ) ) | 
						
							| 19 | 14 18 | bitr4d | ⊢ ( 𝜑  →  ( ( 𝐼  −  1 )  ∈  ( 0 ..^ 𝑀 )  ↔  𝐼  ∈  ( 1 ..^ ( 𝑀  +  1 ) ) ) ) | 
						
							| 20 | 8 19 | mpbird | ⊢ ( 𝜑  →  ( 𝐼  −  1 )  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 21 |  | iccpartimp | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  ( 𝐼  −  1 )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ ( 𝐼  −  1 ) )  <  ( 𝑃 ‘ ( ( 𝐼  −  1 )  +  1 ) ) ) ) | 
						
							| 22 | 1 2 20 21 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ ( 𝐼  −  1 ) )  <  ( 𝑃 ‘ ( ( 𝐼  −  1 )  +  1 ) ) ) ) | 
						
							| 23 | 22 | simprd | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝐼  −  1 ) )  <  ( 𝑃 ‘ ( ( 𝐼  −  1 )  +  1 ) ) ) | 
						
							| 24 | 15 | zcnd | ⊢ ( 𝜑  →  𝐼  ∈  ℂ ) | 
						
							| 25 |  | npcan1 | ⊢ ( 𝐼  ∈  ℂ  →  ( ( 𝐼  −  1 )  +  1 )  =  𝐼 ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  ( ( 𝐼  −  1 )  +  1 )  =  𝐼 ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( 𝜑  →  𝐼  =  ( ( 𝐼  −  1 )  +  1 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ ( ( 𝐼  −  1 )  +  1 ) ) ) | 
						
							| 29 | 23 28 | breqtrrd | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝐼  −  1 ) )  <  ( 𝑃 ‘ 𝐼 ) ) |