| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpart | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ↔  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 3 |  | fvoveq1 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  =  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 4 | 2 3 | breq12d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 5 | 4 | rspccv | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 8 | 6 7 | jctild | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 9 | 1 8 | biimtrdi | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  →  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) | 
						
							| 10 | 9 | 3imp | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) |