| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 2 |  | iccpart | ⊢ ( ( 𝑀  +  1 )  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ ( 𝑀  +  1 ) )  ↔  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ ( 𝑀  +  1 ) )  ↔  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) ) ) | 
						
							| 5 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 6 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 8 |  | peano2uz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 10 |  | fzss2 | ⊢ ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... ( 𝑀  +  1 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... ( 𝑀  +  1 ) ) ) | 
						
							| 12 |  | elmapssres | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ( 0 ... 𝑀 )  ⊆  ( 0 ... ( 𝑀  +  1 ) ) )  →  ( 𝑃  ↾  ( 0 ... 𝑀 ) )  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 13 | 4 11 12 | syl2anr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑃  ↾  ( 0 ... 𝑀 ) )  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 14 |  | fzoss2 | ⊢ ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 0 ..^ 𝑀 )  ⊆  ( 0 ..^ ( 𝑀  +  1 ) ) ) | 
						
							| 15 | 9 14 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( 0 ..^ 𝑀 )  ⊆  ( 0 ..^ ( 𝑀  +  1 ) ) ) | 
						
							| 16 |  | ssralv | ⊢ ( ( 0 ..^ 𝑀 )  ⊆  ( 0 ..^ ( 𝑀  +  1 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 18 | 17 | adantld | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( 𝑀  ∈  ℕ  ∧  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 20 |  | fzossfz | ⊢ ( 0 ..^ 𝑀 )  ⊆  ( 0 ... 𝑀 ) | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  →  ( 0 ..^ 𝑀 )  ⊆  ( 0 ... 𝑀 ) ) | 
						
							| 22 | 21 | sselda | ⊢ ( ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 23 |  | fvres | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 24 | 23 | eqcomd | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  ( 𝑃 ‘ 𝑖 )  =  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 ) ) | 
						
							| 25 | 22 24 | syl | ⊢ ( ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  =  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 27 |  | elfzouz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 29 |  | fzofzp1b | ⊢ ( 𝑖  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) ) | 
						
							| 31 | 26 30 | mpbid | ⊢ ( ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 32 |  | fvres | ⊢ ( ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 )  →  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  =  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 35 | 25 34 | breq12d | ⊢ ( ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ↔  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 )  <  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 36 | 35 | biimpd | ⊢ ( ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 )  <  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 37 | 36 | ralimdva | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  𝑀  ∈  ℕ )  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 )  <  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 38 | 37 | ex | ⊢ ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  →  ( 𝑀  ∈  ℕ  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 )  <  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝑀  ∈  ℕ  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 )  <  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 40 | 39 | impcom | ⊢ ( ( 𝑀  ∈  ℕ  ∧  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 )  <  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 41 | 19 40 | mpd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 )  <  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 42 |  | iccpart | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) )  ∈  ( RePart ‘ 𝑀 )  ↔  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) )  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 )  <  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) )  ∈  ( RePart ‘ 𝑀 )  ↔  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) )  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ 𝑖 )  <  ( ( 𝑃  ↾  ( 0 ... 𝑀 ) ) ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 44 | 13 41 43 | mpbir2and | ⊢ ( ( 𝑀  ∈  ℕ  ∧  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑃  ↾  ( 0 ... 𝑀 ) )  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 45 | 44 | ex | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... ( 𝑀  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑀  +  1 ) ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝑃  ↾  ( 0 ... 𝑀 ) )  ∈  ( RePart ‘ 𝑀 ) ) ) | 
						
							| 46 | 3 45 | sylbid | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ ( 𝑀  +  1 ) )  →  ( 𝑃  ↾  ( 0 ... 𝑀 ) )  ∈  ( RePart ‘ 𝑀 ) ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑃  ∈  ( RePart ‘ ( 𝑀  +  1 ) ) )  →  ( 𝑃  ↾  ( 0 ... 𝑀 ) )  ∈  ( RePart ‘ 𝑀 ) ) |