| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpval | ⊢ ( 𝑀  ∈  ℕ  →  ( RePart ‘ 𝑀 )  =  { 𝑝  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∣  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ↔  𝑃  ∈  { 𝑝  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∣  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 3 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 4 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ ( 𝑖  +  1 ) )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 5 | 3 4 | breq12d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 6 | 5 | ralbidv | ⊢ ( 𝑝  =  𝑃  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 7 | 6 | elrab | ⊢ ( 𝑃  ∈  { 𝑝  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∣  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) }  ↔  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 8 | 2 7 | bitrdi | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ↔  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) |