Metamath Proof Explorer


Theorem iccpart

Description: A special partition. Corresponds to fourierdlem2 in GS's mathbox. (Contributed by AV, 9-Jul-2020)

Ref Expression
Assertion iccpart MPRePartMP*0Mi0..^MPi<Pi+1

Proof

Step Hyp Ref Expression
1 iccpval MRePartM=p*0M|i0..^Mpi<pi+1
2 1 eleq2d MPRePartMPp*0M|i0..^Mpi<pi+1
3 fveq1 p=Ppi=Pi
4 fveq1 p=Ppi+1=Pi+1
5 3 4 breq12d p=Ppi<pi+1Pi<Pi+1
6 5 ralbidv p=Pi0..^Mpi<pi+1i0..^MPi<Pi+1
7 6 elrab Pp*0M|i0..^Mpi<pi+1P*0Mi0..^MPi<Pi+1
8 2 7 bitrdi MPRePartMP*0Mi0..^MPi<Pi+1