| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartgtprec.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartgtprec.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | iccpartipre.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ..^ 𝑀 ) ) | 
						
							| 4 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | peano2zm | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  −  1 )  ∈  ℤ ) | 
						
							| 6 |  | id | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℤ ) | 
						
							| 7 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 8 | 7 | lem1d | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  −  1 )  ≤  𝑀 ) | 
						
							| 9 | 5 6 8 | 3jca | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  −  1 )  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  ( 𝑀  −  1 )  ≤  𝑀 ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑀  −  1 )  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  ( 𝑀  −  1 )  ≤  𝑀 ) ) | 
						
							| 11 |  | eluz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) )  ↔  ( ( 𝑀  −  1 )  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  ( 𝑀  −  1 )  ≤  𝑀 ) ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 13 | 1 12 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 14 |  | fzss2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) )  →  ( 0 ... ( 𝑀  −  1 ) )  ⊆  ( 0 ... 𝑀 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  ( 0 ... ( 𝑀  −  1 ) )  ⊆  ( 0 ... 𝑀 ) ) | 
						
							| 16 |  | fzossfz | ⊢ ( 1 ..^ 𝑀 )  ⊆  ( 1 ... 𝑀 ) | 
						
							| 17 | 16 3 | sselid | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 18 |  | elfzoelz | ⊢ ( 𝐼  ∈  ( 1 ..^ 𝑀 )  →  𝐼  ∈  ℤ ) | 
						
							| 19 | 3 18 | syl | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 20 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 21 |  | elfzm1b | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝐼  ∈  ( 1 ... 𝑀 )  ↔  ( 𝐼  −  1 )  ∈  ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( 1 ... 𝑀 )  ↔  ( 𝐼  −  1 )  ∈  ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 23 | 17 22 | mpbid | ⊢ ( 𝜑  →  ( 𝐼  −  1 )  ∈  ( 0 ... ( 𝑀  −  1 ) ) ) | 
						
							| 24 | 15 23 | sseldd | ⊢ ( 𝜑  →  ( 𝐼  −  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 25 | 1 2 24 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝐼  −  1 ) )  ∈  ℝ* ) | 
						
							| 26 |  | 1eluzge0 | ⊢ 1  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 27 |  | fzoss1 | ⊢ ( 1  ∈  ( ℤ≥ ‘ 0 )  →  ( 1 ..^ 𝑀 )  ⊆  ( 0 ..^ 𝑀 ) ) | 
						
							| 28 | 26 27 | mp1i | ⊢ ( 𝜑  →  ( 1 ..^ 𝑀 )  ⊆  ( 0 ..^ 𝑀 ) ) | 
						
							| 29 |  | fzossfz | ⊢ ( 0 ..^ 𝑀 )  ⊆  ( 0 ... 𝑀 ) | 
						
							| 30 | 28 29 | sstrdi | ⊢ ( 𝜑  →  ( 1 ..^ 𝑀 )  ⊆  ( 0 ... 𝑀 ) ) | 
						
							| 31 | 30 3 | sseldd | ⊢ ( 𝜑  →  𝐼  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 32 | 1 2 31 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝐼 )  ∈  ℝ* ) | 
						
							| 33 | 28 3 | sseldd | ⊢ ( 𝜑  →  𝐼  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 34 |  | fzofzp1 | ⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝜑  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 36 | 1 2 35 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ* ) | 
						
							| 37 | 1 2 17 | iccpartgtprec | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝐼  −  1 ) )  <  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 38 |  | iccpartimp | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 39 | 1 2 33 38 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 40 | 39 | simprd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 41 |  | xrre2 | ⊢ ( ( ( ( 𝑃 ‘ ( 𝐼  −  1 ) )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ ( 𝐼  −  1 ) )  <  ( 𝑃 ‘ 𝐼 )  ∧  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ( 𝑃 ‘ 𝐼 )  ∈  ℝ ) | 
						
							| 42 | 25 32 36 37 40 41 | syl32anc | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝐼 )  ∈  ℝ ) |