| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfuval.i |
|- I = ( idFunc ` C ) |
| 2 |
|
idfuval.b |
|- B = ( Base ` C ) |
| 3 |
|
idfuval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
idfuval.h |
|- H = ( Hom ` C ) |
| 5 |
|
idfu2nd.x |
|- ( ph -> X e. B ) |
| 6 |
|
idfu2nd.y |
|- ( ph -> Y e. B ) |
| 7 |
|
idfu2.f |
|- ( ph -> F e. ( X H Y ) ) |
| 8 |
1 2 3 4 5 6
|
idfu2nd |
|- ( ph -> ( X ( 2nd ` I ) Y ) = ( _I |` ( X H Y ) ) ) |
| 9 |
8
|
fveq1d |
|- ( ph -> ( ( X ( 2nd ` I ) Y ) ` F ) = ( ( _I |` ( X H Y ) ) ` F ) ) |
| 10 |
|
fvresi |
|- ( F e. ( X H Y ) -> ( ( _I |` ( X H Y ) ) ` F ) = F ) |
| 11 |
7 10
|
syl |
|- ( ph -> ( ( _I |` ( X H Y ) ) ` F ) = F ) |
| 12 |
9 11
|
eqtrd |
|- ( ph -> ( ( X ( 2nd ` I ) Y ) ` F ) = F ) |