Description: An ideal contains 0 . (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idl0cl.1 | |- G = ( 1st ` R ) |
|
idl0cl.2 | |- Z = ( GId ` G ) |
||
Assertion | idl0cl | |- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> Z e. I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idl0cl.1 | |- G = ( 1st ` R ) |
|
2 | idl0cl.2 | |- Z = ( GId ` G ) |
|
3 | eqid | |- ( 2nd ` R ) = ( 2nd ` R ) |
|
4 | eqid | |- ran G = ran G |
|
5 | 1 3 4 2 | isidl | |- ( R e. RingOps -> ( I e. ( Idl ` R ) <-> ( I C_ ran G /\ Z e. I /\ A. x e. I ( A. y e. I ( x G y ) e. I /\ A. z e. ran G ( ( z ( 2nd ` R ) x ) e. I /\ ( x ( 2nd ` R ) z ) e. I ) ) ) ) ) |
6 | 5 | biimpa | |- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( I C_ ran G /\ Z e. I /\ A. x e. I ( A. y e. I ( x G y ) e. I /\ A. z e. ran G ( ( z ( 2nd ` R ) x ) e. I /\ ( x ( 2nd ` R ) z ) e. I ) ) ) ) |
7 | 6 | simp2d | |- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> Z e. I ) |