Metamath Proof Explorer


Theorem idl0cl

Description: An ideal contains 0 . (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idl0cl.1
|- G = ( 1st ` R )
idl0cl.2
|- Z = ( GId ` G )
Assertion idl0cl
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> Z e. I )

Proof

Step Hyp Ref Expression
1 idl0cl.1
 |-  G = ( 1st ` R )
2 idl0cl.2
 |-  Z = ( GId ` G )
3 eqid
 |-  ( 2nd ` R ) = ( 2nd ` R )
4 eqid
 |-  ran G = ran G
5 1 3 4 2 isidl
 |-  ( R e. RingOps -> ( I e. ( Idl ` R ) <-> ( I C_ ran G /\ Z e. I /\ A. x e. I ( A. y e. I ( x G y ) e. I /\ A. z e. ran G ( ( z ( 2nd ` R ) x ) e. I /\ ( x ( 2nd ` R ) z ) e. I ) ) ) ) )
6 5 biimpa
 |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( I C_ ran G /\ Z e. I /\ A. x e. I ( A. y e. I ( x G y ) e. I /\ A. z e. ran G ( ( z ( 2nd ` R ) x ) e. I /\ ( x ( 2nd ` R ) z ) e. I ) ) ) )
7 6 simp2d
 |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> Z e. I )