Metamath Proof Explorer


Theorem idl0cl

Description: An ideal contains 0 . (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idl0cl.1 G=1stR
idl0cl.2 Z=GIdG
Assertion idl0cl RRingOpsIIdlRZI

Proof

Step Hyp Ref Expression
1 idl0cl.1 G=1stR
2 idl0cl.2 Z=GIdG
3 eqid 2ndR=2ndR
4 eqid ranG=ranG
5 1 3 4 2 isidl RRingOpsIIdlRIranGZIxIyIxGyIzranGz2ndRxIx2ndRzI
6 5 biimpa RRingOpsIIdlRIranGZIxIyIxGyIzranGz2ndRxIx2ndRzI
7 6 simp2d RRingOpsIIdlRZI