Metamath Proof Explorer


Theorem idsymrel

Description: The identity relation is symmetric. (Contributed by AV, 19-Jun-2022)

Ref Expression
Assertion idsymrel
|- SymRel _I

Proof

Step Hyp Ref Expression
1 cnvi
 |-  `' _I = _I
2 reli
 |-  Rel _I
3 dfsymrel4
 |-  ( SymRel _I <-> ( `' _I = _I /\ Rel _I ) )
4 1 2 3 mpbir2an
 |-  SymRel _I