Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | epnsymrel | |- -. SymRel _E |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epnsym | |- `' _E =/= _E |
|
2 | 1 | neii | |- -. `' _E = _E |
3 | 2 | intnanr | |- -. ( `' _E = _E /\ Rel _E ) |
4 | dfsymrel4 | |- ( SymRel _E <-> ( `' _E = _E /\ Rel _E ) ) |
|
5 | 3 4 | mtbir | |- -. SymRel _E |