Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Symmetry
epnsymrel
Next ⟩
Reflexivity and symmetry
Metamath Proof Explorer
Ascii
Unicode
Theorem
epnsymrel
Description:
The membership (epsilon) relation is not symmetric.
(Contributed by
AV
, 18-Jun-2022)
Ref
Expression
Assertion
epnsymrel
⊢
¬
SymRel
E
Proof
Step
Hyp
Ref
Expression
1
epnsym
⊢
E
-1
≠
E
2
1
neii
⊢
¬
E
-1
=
E
3
2
intnanr
⊢
¬
E
-1
=
E
∧
Rel
⁡
E
4
dfsymrel4
⊢
SymRel
E
↔
E
-1
=
E
∧
Rel
⁡
E
5
3
4
mtbir
⊢
¬
SymRel
E