Metamath Proof Explorer


Theorem epnsymrel

Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022)

Ref Expression
Assertion epnsymrel ¬ SymRel E

Proof

Step Hyp Ref Expression
1 epnsym E ≠ E
2 1 neii ¬ E = E
3 2 intnanr ¬ ( E = E ∧ Rel E )
4 dfsymrel4 ( SymRel E ↔ ( E = E ∧ Rel E ) )
5 3 4 mtbir ¬ SymRel E