Metamath Proof Explorer


Theorem ifpan123g

Description: Conjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020)

Ref Expression
Assertion ifpan123g
|- ( ( if- ( ph , ch , ta ) /\ if- ( ps , th , et ) ) <-> ( ( ( -. ph \/ ch ) /\ ( ph \/ ta ) ) /\ ( ( -. ps \/ th ) /\ ( ps \/ et ) ) ) )

Proof

Step Hyp Ref Expression
1 dfifp4
 |-  ( if- ( ph , ch , ta ) <-> ( ( -. ph \/ ch ) /\ ( ph \/ ta ) ) )
2 dfifp4
 |-  ( if- ( ps , th , et ) <-> ( ( -. ps \/ th ) /\ ( ps \/ et ) ) )
3 1 2 anbi12i
 |-  ( ( if- ( ph , ch , ta ) /\ if- ( ps , th , et ) ) <-> ( ( ( -. ph \/ ch ) /\ ( ph \/ ta ) ) /\ ( ( -. ps \/ th ) /\ ( ps \/ et ) ) ) )