Description: Conjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpan123g | |- ( ( if- ( ph , ch , ta ) /\ if- ( ps , th , et ) ) <-> ( ( ( -. ph \/ ch ) /\ ( ph \/ ta ) ) /\ ( ( -. ps \/ th ) /\ ( ps \/ et ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfifp4 | |- ( if- ( ph , ch , ta ) <-> ( ( -. ph \/ ch ) /\ ( ph \/ ta ) ) ) |
|
2 | dfifp4 | |- ( if- ( ps , th , et ) <-> ( ( -. ps \/ th ) /\ ( ps \/ et ) ) ) |
|
3 | 1 2 | anbi12i | |- ( ( if- ( ph , ch , ta ) /\ if- ( ps , th , et ) ) <-> ( ( ( -. ph \/ ch ) /\ ( ph \/ ta ) ) /\ ( ( -. ps \/ th ) /\ ( ps \/ et ) ) ) ) |