Step |
Hyp |
Ref |
Expression |
1 |
|
imasbas.u |
|- ( ph -> U = ( F "s R ) ) |
2 |
|
imasbas.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
imasbas.f |
|- ( ph -> F : V -onto-> B ) |
4 |
|
imasbas.r |
|- ( ph -> R e. Z ) |
5 |
|
imasds.e |
|- E = ( dist ` R ) |
6 |
|
imasds.d |
|- D = ( dist ` U ) |
7 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
9 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
10 |
|
eqid |
|- ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) ) |
11 |
|
eqid |
|- ( .s ` R ) = ( .s ` R ) |
12 |
|
eqid |
|- ( .i ` R ) = ( .i ` R ) |
13 |
|
eqid |
|- ( TopOpen ` R ) = ( TopOpen ` R ) |
14 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
15 |
|
eqidd |
|- ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } ) |
16 |
|
eqidd |
|- ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } ) |
17 |
|
eqidd |
|- ( ph -> U_ q e. V ( p e. ( Base ` ( Scalar ` R ) ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) = U_ q e. V ( p e. ( Base ` ( Scalar ` R ) ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) ) |
18 |
|
eqidd |
|- ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } ) |
19 |
|
eqidd |
|- ( ph -> ( ( TopOpen ` R ) qTop F ) = ( ( TopOpen ` R ) qTop F ) ) |
20 |
|
eqidd |
|- ( ph -> ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) = ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) ) |
21 |
|
eqidd |
|- ( ph -> ( ( F o. ( le ` R ) ) o. `' F ) = ( ( F o. ( le ` R ) ) o. `' F ) ) |
22 |
1 2 7 8 9 10 11 12 13 5 14 15 16 17 18 19 20 21 3 4
|
imasval |
|- ( ph -> U = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` ( Scalar ` R ) ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) >. } ) ) |
23 |
|
eqid |
|- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` ( Scalar ` R ) ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` ( Scalar ` R ) ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) >. } ) |
24 |
23
|
imasvalstr |
|- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` ( Scalar ` R ) ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) >. } ) Struct <. 1 , ; 1 2 >. |
25 |
|
dsid |
|- dist = Slot ( dist ` ndx ) |
26 |
|
snsstp3 |
|- { <. ( dist ` ndx ) , ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) >. } C_ { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) >. } |
27 |
|
ssun2 |
|- { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` ( Scalar ` R ) ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) >. } ) |
28 |
26 27
|
sstri |
|- { <. ( dist ` ndx ) , ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` ( Scalar ` R ) ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) >. } ) |
29 |
|
fvex |
|- ( Base ` R ) e. _V |
30 |
2 29
|
eqeltrdi |
|- ( ph -> V e. _V ) |
31 |
|
fornex |
|- ( V e. _V -> ( F : V -onto-> B -> B e. _V ) ) |
32 |
30 3 31
|
sylc |
|- ( ph -> B e. _V ) |
33 |
|
mpoexga |
|- ( ( B e. _V /\ B e. _V ) -> ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) e. _V ) |
34 |
32 32 33
|
syl2anc |
|- ( ph -> ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) e. _V ) |
35 |
22 24 25 28 34 6
|
strfv3 |
|- ( ph -> D = ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) ) |