Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imp5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
Assertion | imp5g | |- ( ( ph /\ ps ) -> ( ( ( ch /\ th ) /\ ta ) -> et ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
2 | 1 | imp4b | |- ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ( ta -> et ) ) ) |
3 | 2 | impd | |- ( ( ph /\ ps ) -> ( ( ( ch /\ th ) /\ ta ) -> et ) ) |