Metamath Proof Explorer


Theorem imp5g

Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009)

Ref Expression
Hypothesis imp5.1
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
Assertion imp5g
|- ( ( ph /\ ps ) -> ( ( ( ch /\ th ) /\ ta ) -> et ) )

Proof

Step Hyp Ref Expression
1 imp5.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
2 1 imp4b
 |-  ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ( ta -> et ) ) )
3 2 impd
 |-  ( ( ph /\ ps ) -> ( ( ( ch /\ th ) /\ ta ) -> et ) )