| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isinag.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | isinag.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | isinag.k |  |-  K = ( hlG ` G ) | 
						
							| 4 |  | isinag.x |  |-  ( ph -> X e. P ) | 
						
							| 5 |  | isinag.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | isinag.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | isinag.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | inagflat.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 9 |  | inagswap.1 |  |-  ( ph -> X ( inA ` G ) <" A B C "> ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 | isinag |  |-  ( ph -> ( X ( inA ` G ) <" A B C "> <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) | 
						
							| 11 | 9 10 | mpbid |  |-  ( ph -> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) | 
						
							| 12 | 11 | simpld |  |-  ( ph -> ( A =/= B /\ C =/= B /\ X =/= B ) ) | 
						
							| 13 | 12 | simp3d |  |-  ( ph -> X =/= B ) |