| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isinag.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | isinag.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | isinag.k |  |-  K = ( hlG ` G ) | 
						
							| 4 |  | isinag.x |  |-  ( ph -> X e. P ) | 
						
							| 5 |  | isinag.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | isinag.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | isinag.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | isinag.g |  |-  ( ph -> G e. V ) | 
						
							| 9 |  | simpr |  |-  ( ( p = X /\ t = <" A B C "> ) -> t = <" A B C "> ) | 
						
							| 10 | 9 | fveq1d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( t ` 0 ) = ( <" A B C "> ` 0 ) ) | 
						
							| 11 | 9 | fveq1d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( t ` 1 ) = ( <" A B C "> ` 1 ) ) | 
						
							| 12 | 10 11 | neeq12d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( ( t ` 0 ) =/= ( t ` 1 ) <-> ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) ) ) | 
						
							| 13 | 9 | fveq1d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( t ` 2 ) = ( <" A B C "> ` 2 ) ) | 
						
							| 14 | 13 11 | neeq12d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( ( t ` 2 ) =/= ( t ` 1 ) <-> ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) ) ) | 
						
							| 15 |  | simpl |  |-  ( ( p = X /\ t = <" A B C "> ) -> p = X ) | 
						
							| 16 | 15 11 | neeq12d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( p =/= ( t ` 1 ) <-> X =/= ( <" A B C "> ` 1 ) ) ) | 
						
							| 17 | 12 14 16 | 3anbi123d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) <-> ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) ) ) | 
						
							| 18 | 10 13 | oveq12d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( ( t ` 0 ) I ( t ` 2 ) ) = ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) ) | 
						
							| 19 | 18 | eleq2d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) <-> x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) ) ) | 
						
							| 20 | 11 | eqeq2d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( x = ( t ` 1 ) <-> x = ( <" A B C "> ` 1 ) ) ) | 
						
							| 21 |  | eqidd |  |-  ( ( p = X /\ t = <" A B C "> ) -> x = x ) | 
						
							| 22 | 11 | fveq2d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( K ` ( t ` 1 ) ) = ( K ` ( <" A B C "> ` 1 ) ) ) | 
						
							| 23 | 21 22 15 | breq123d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( x ( K ` ( t ` 1 ) ) p <-> x ( K ` ( <" A B C "> ` 1 ) ) X ) ) | 
						
							| 24 | 20 23 | orbi12d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) <-> ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) | 
						
							| 25 | 19 24 | anbi12d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) <-> ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) ) | 
						
							| 26 | 25 | rexbidv |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) <-> E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) ) | 
						
							| 27 | 17 26 | anbi12d |  |-  ( ( p = X /\ t = <" A B C "> ) -> ( ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) <-> ( ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) /\ E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) ) ) | 
						
							| 28 |  | eqid |  |-  { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } = { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } | 
						
							| 29 | 27 28 | brab2a |  |-  ( X { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } <" A B C "> <-> ( ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) /\ E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) ) ) | 
						
							| 30 |  | s3fv0 |  |-  ( A e. P -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 31 | 5 30 | syl |  |-  ( ph -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 32 |  | s3fv1 |  |-  ( B e. P -> ( <" A B C "> ` 1 ) = B ) | 
						
							| 33 | 6 32 | syl |  |-  ( ph -> ( <" A B C "> ` 1 ) = B ) | 
						
							| 34 | 31 33 | neeq12d |  |-  ( ph -> ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) <-> A =/= B ) ) | 
						
							| 35 |  | s3fv2 |  |-  ( C e. P -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 36 | 7 35 | syl |  |-  ( ph -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 37 | 36 33 | neeq12d |  |-  ( ph -> ( ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) <-> C =/= B ) ) | 
						
							| 38 | 33 | neeq2d |  |-  ( ph -> ( X =/= ( <" A B C "> ` 1 ) <-> X =/= B ) ) | 
						
							| 39 | 34 37 38 | 3anbi123d |  |-  ( ph -> ( ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) <-> ( A =/= B /\ C =/= B /\ X =/= B ) ) ) | 
						
							| 40 | 31 36 | oveq12d |  |-  ( ph -> ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) = ( A I C ) ) | 
						
							| 41 | 40 | eleq2d |  |-  ( ph -> ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) <-> x e. ( A I C ) ) ) | 
						
							| 42 | 33 | eqeq2d |  |-  ( ph -> ( x = ( <" A B C "> ` 1 ) <-> x = B ) ) | 
						
							| 43 | 33 | fveq2d |  |-  ( ph -> ( K ` ( <" A B C "> ` 1 ) ) = ( K ` B ) ) | 
						
							| 44 | 43 | breqd |  |-  ( ph -> ( x ( K ` ( <" A B C "> ` 1 ) ) X <-> x ( K ` B ) X ) ) | 
						
							| 45 | 42 44 | orbi12d |  |-  ( ph -> ( ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) <-> ( x = B \/ x ( K ` B ) X ) ) ) | 
						
							| 46 | 41 45 | anbi12d |  |-  ( ph -> ( ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) <-> ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) | 
						
							| 47 | 46 | rexbidv |  |-  ( ph -> ( E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) <-> E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) | 
						
							| 48 | 39 47 | anbi12d |  |-  ( ph -> ( ( ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) /\ E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) | 
						
							| 49 | 48 | anbi2d |  |-  ( ph -> ( ( ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) /\ E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) ) <-> ( ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) ) | 
						
							| 50 | 29 49 | bitrid |  |-  ( ph -> ( X { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } <" A B C "> <-> ( ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) ) | 
						
							| 51 |  | elex |  |-  ( G e. V -> G e. _V ) | 
						
							| 52 |  | fveq2 |  |-  ( g = G -> ( Base ` g ) = ( Base ` G ) ) | 
						
							| 53 | 52 1 | eqtr4di |  |-  ( g = G -> ( Base ` g ) = P ) | 
						
							| 54 | 53 | eleq2d |  |-  ( g = G -> ( p e. ( Base ` g ) <-> p e. P ) ) | 
						
							| 55 | 53 | oveq1d |  |-  ( g = G -> ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) = ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 56 | 55 | eleq2d |  |-  ( g = G -> ( t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) <-> t e. ( P ^m ( 0 ..^ 3 ) ) ) ) | 
						
							| 57 | 54 56 | anbi12d |  |-  ( g = G -> ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) <-> ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) ) ) | 
						
							| 58 |  | fveq2 |  |-  ( g = G -> ( Itv ` g ) = ( Itv ` G ) ) | 
						
							| 59 | 58 2 | eqtr4di |  |-  ( g = G -> ( Itv ` g ) = I ) | 
						
							| 60 | 59 | oveqd |  |-  ( g = G -> ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) = ( ( t ` 0 ) I ( t ` 2 ) ) ) | 
						
							| 61 | 60 | eleq2d |  |-  ( g = G -> ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) <-> x e. ( ( t ` 0 ) I ( t ` 2 ) ) ) ) | 
						
							| 62 |  | fveq2 |  |-  ( g = G -> ( hlG ` g ) = ( hlG ` G ) ) | 
						
							| 63 | 62 3 | eqtr4di |  |-  ( g = G -> ( hlG ` g ) = K ) | 
						
							| 64 | 63 | fveq1d |  |-  ( g = G -> ( ( hlG ` g ) ` ( t ` 1 ) ) = ( K ` ( t ` 1 ) ) ) | 
						
							| 65 | 64 | breqd |  |-  ( g = G -> ( x ( ( hlG ` g ) ` ( t ` 1 ) ) p <-> x ( K ` ( t ` 1 ) ) p ) ) | 
						
							| 66 | 65 | orbi2d |  |-  ( g = G -> ( ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) <-> ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) | 
						
							| 67 | 61 66 | anbi12d |  |-  ( g = G -> ( ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) <-> ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) | 
						
							| 68 | 53 67 | rexeqbidv |  |-  ( g = G -> ( E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) <-> E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) | 
						
							| 69 | 68 | anbi2d |  |-  ( g = G -> ( ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) <-> ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) ) | 
						
							| 70 | 57 69 | anbi12d |  |-  ( g = G -> ( ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) <-> ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) ) ) | 
						
							| 71 | 70 | opabbidv |  |-  ( g = G -> { <. p , t >. | ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) } = { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } ) | 
						
							| 72 |  | df-inag |  |-  inA = ( g e. _V |-> { <. p , t >. | ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) } ) | 
						
							| 73 | 1 | fvexi |  |-  P e. _V | 
						
							| 74 |  | ovex |  |-  ( P ^m ( 0 ..^ 3 ) ) e. _V | 
						
							| 75 | 73 74 | xpex |  |-  ( P X. ( P ^m ( 0 ..^ 3 ) ) ) e. _V | 
						
							| 76 |  | opabssxp |  |-  { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } C_ ( P X. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 77 | 75 76 | ssexi |  |-  { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } e. _V | 
						
							| 78 | 71 72 77 | fvmpt |  |-  ( G e. _V -> ( inA ` G ) = { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } ) | 
						
							| 79 | 8 51 78 | 3syl |  |-  ( ph -> ( inA ` G ) = { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } ) | 
						
							| 80 | 79 | breqd |  |-  ( ph -> ( X ( inA ` G ) <" A B C "> <-> X { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } <" A B C "> ) ) | 
						
							| 81 | 5 6 7 | s3cld |  |-  ( ph -> <" A B C "> e. Word P ) | 
						
							| 82 |  | s3len |  |-  ( # ` <" A B C "> ) = 3 | 
						
							| 83 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 84 |  | wrdmap |  |-  ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) | 
						
							| 85 | 73 83 84 | mp2an |  |-  ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 86 | 81 82 85 | sylanblc |  |-  ( ph -> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 87 | 4 86 | jca |  |-  ( ph -> ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) | 
						
							| 88 | 87 | biantrurd |  |-  ( ph -> ( ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) <-> ( ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) ) | 
						
							| 89 | 50 80 88 | 3bitr4d |  |-  ( ph -> ( X ( inA ` G ) <" A B C "> <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) |