Step |
Hyp |
Ref |
Expression |
1 |
|
isinag.p |
|- P = ( Base ` G ) |
2 |
|
isinag.i |
|- I = ( Itv ` G ) |
3 |
|
isinag.k |
|- K = ( hlG ` G ) |
4 |
|
isinag.x |
|- ( ph -> X e. P ) |
5 |
|
isinag.a |
|- ( ph -> A e. P ) |
6 |
|
isinag.b |
|- ( ph -> B e. P ) |
7 |
|
isinag.c |
|- ( ph -> C e. P ) |
8 |
|
isinag.g |
|- ( ph -> G e. V ) |
9 |
|
simpr |
|- ( ( p = X /\ t = <" A B C "> ) -> t = <" A B C "> ) |
10 |
9
|
fveq1d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( t ` 0 ) = ( <" A B C "> ` 0 ) ) |
11 |
9
|
fveq1d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( t ` 1 ) = ( <" A B C "> ` 1 ) ) |
12 |
10 11
|
neeq12d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( ( t ` 0 ) =/= ( t ` 1 ) <-> ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) ) ) |
13 |
9
|
fveq1d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( t ` 2 ) = ( <" A B C "> ` 2 ) ) |
14 |
13 11
|
neeq12d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( ( t ` 2 ) =/= ( t ` 1 ) <-> ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) ) ) |
15 |
|
simpl |
|- ( ( p = X /\ t = <" A B C "> ) -> p = X ) |
16 |
15 11
|
neeq12d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( p =/= ( t ` 1 ) <-> X =/= ( <" A B C "> ` 1 ) ) ) |
17 |
12 14 16
|
3anbi123d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) <-> ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) ) ) |
18 |
10 13
|
oveq12d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( ( t ` 0 ) I ( t ` 2 ) ) = ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) ) |
19 |
18
|
eleq2d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) <-> x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) ) ) |
20 |
11
|
eqeq2d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( x = ( t ` 1 ) <-> x = ( <" A B C "> ` 1 ) ) ) |
21 |
|
eqidd |
|- ( ( p = X /\ t = <" A B C "> ) -> x = x ) |
22 |
11
|
fveq2d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( K ` ( t ` 1 ) ) = ( K ` ( <" A B C "> ` 1 ) ) ) |
23 |
21 22 15
|
breq123d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( x ( K ` ( t ` 1 ) ) p <-> x ( K ` ( <" A B C "> ` 1 ) ) X ) ) |
24 |
20 23
|
orbi12d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) <-> ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) |
25 |
19 24
|
anbi12d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) <-> ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) ) |
26 |
25
|
rexbidv |
|- ( ( p = X /\ t = <" A B C "> ) -> ( E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) <-> E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) ) |
27 |
17 26
|
anbi12d |
|- ( ( p = X /\ t = <" A B C "> ) -> ( ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) <-> ( ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) /\ E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) ) ) |
28 |
|
eqid |
|- { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } = { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } |
29 |
27 28
|
brab2a |
|- ( X { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } <" A B C "> <-> ( ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) /\ E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) ) ) |
30 |
|
s3fv0 |
|- ( A e. P -> ( <" A B C "> ` 0 ) = A ) |
31 |
5 30
|
syl |
|- ( ph -> ( <" A B C "> ` 0 ) = A ) |
32 |
|
s3fv1 |
|- ( B e. P -> ( <" A B C "> ` 1 ) = B ) |
33 |
6 32
|
syl |
|- ( ph -> ( <" A B C "> ` 1 ) = B ) |
34 |
31 33
|
neeq12d |
|- ( ph -> ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) <-> A =/= B ) ) |
35 |
|
s3fv2 |
|- ( C e. P -> ( <" A B C "> ` 2 ) = C ) |
36 |
7 35
|
syl |
|- ( ph -> ( <" A B C "> ` 2 ) = C ) |
37 |
36 33
|
neeq12d |
|- ( ph -> ( ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) <-> C =/= B ) ) |
38 |
33
|
neeq2d |
|- ( ph -> ( X =/= ( <" A B C "> ` 1 ) <-> X =/= B ) ) |
39 |
34 37 38
|
3anbi123d |
|- ( ph -> ( ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) <-> ( A =/= B /\ C =/= B /\ X =/= B ) ) ) |
40 |
31 36
|
oveq12d |
|- ( ph -> ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) = ( A I C ) ) |
41 |
40
|
eleq2d |
|- ( ph -> ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) <-> x e. ( A I C ) ) ) |
42 |
33
|
eqeq2d |
|- ( ph -> ( x = ( <" A B C "> ` 1 ) <-> x = B ) ) |
43 |
33
|
fveq2d |
|- ( ph -> ( K ` ( <" A B C "> ` 1 ) ) = ( K ` B ) ) |
44 |
43
|
breqd |
|- ( ph -> ( x ( K ` ( <" A B C "> ` 1 ) ) X <-> x ( K ` B ) X ) ) |
45 |
42 44
|
orbi12d |
|- ( ph -> ( ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) <-> ( x = B \/ x ( K ` B ) X ) ) ) |
46 |
41 45
|
anbi12d |
|- ( ph -> ( ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) <-> ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) |
47 |
46
|
rexbidv |
|- ( ph -> ( E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) <-> E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) |
48 |
39 47
|
anbi12d |
|- ( ph -> ( ( ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) /\ E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) |
49 |
48
|
anbi2d |
|- ( ph -> ( ( ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( <" A B C "> ` 0 ) =/= ( <" A B C "> ` 1 ) /\ ( <" A B C "> ` 2 ) =/= ( <" A B C "> ` 1 ) /\ X =/= ( <" A B C "> ` 1 ) ) /\ E. x e. P ( x e. ( ( <" A B C "> ` 0 ) I ( <" A B C "> ` 2 ) ) /\ ( x = ( <" A B C "> ` 1 ) \/ x ( K ` ( <" A B C "> ` 1 ) ) X ) ) ) ) <-> ( ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) ) |
50 |
29 49
|
syl5bb |
|- ( ph -> ( X { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } <" A B C "> <-> ( ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) ) |
51 |
|
elex |
|- ( G e. V -> G e. _V ) |
52 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
53 |
52 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = P ) |
54 |
53
|
eleq2d |
|- ( g = G -> ( p e. ( Base ` g ) <-> p e. P ) ) |
55 |
53
|
oveq1d |
|- ( g = G -> ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) = ( P ^m ( 0 ..^ 3 ) ) ) |
56 |
55
|
eleq2d |
|- ( g = G -> ( t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) <-> t e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
57 |
54 56
|
anbi12d |
|- ( g = G -> ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) <-> ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) ) ) |
58 |
|
fveq2 |
|- ( g = G -> ( Itv ` g ) = ( Itv ` G ) ) |
59 |
58 2
|
eqtr4di |
|- ( g = G -> ( Itv ` g ) = I ) |
60 |
59
|
oveqd |
|- ( g = G -> ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) = ( ( t ` 0 ) I ( t ` 2 ) ) ) |
61 |
60
|
eleq2d |
|- ( g = G -> ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) <-> x e. ( ( t ` 0 ) I ( t ` 2 ) ) ) ) |
62 |
|
fveq2 |
|- ( g = G -> ( hlG ` g ) = ( hlG ` G ) ) |
63 |
62 3
|
eqtr4di |
|- ( g = G -> ( hlG ` g ) = K ) |
64 |
63
|
fveq1d |
|- ( g = G -> ( ( hlG ` g ) ` ( t ` 1 ) ) = ( K ` ( t ` 1 ) ) ) |
65 |
64
|
breqd |
|- ( g = G -> ( x ( ( hlG ` g ) ` ( t ` 1 ) ) p <-> x ( K ` ( t ` 1 ) ) p ) ) |
66 |
65
|
orbi2d |
|- ( g = G -> ( ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) <-> ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) |
67 |
61 66
|
anbi12d |
|- ( g = G -> ( ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) <-> ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) |
68 |
53 67
|
rexeqbidv |
|- ( g = G -> ( E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) <-> E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) |
69 |
68
|
anbi2d |
|- ( g = G -> ( ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) <-> ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) ) |
70 |
57 69
|
anbi12d |
|- ( g = G -> ( ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) <-> ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) ) ) |
71 |
70
|
opabbidv |
|- ( g = G -> { <. p , t >. | ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) } = { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } ) |
72 |
|
df-inag |
|- inA = ( g e. _V |-> { <. p , t >. | ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) } ) |
73 |
1
|
fvexi |
|- P e. _V |
74 |
|
ovex |
|- ( P ^m ( 0 ..^ 3 ) ) e. _V |
75 |
73 74
|
xpex |
|- ( P X. ( P ^m ( 0 ..^ 3 ) ) ) e. _V |
76 |
|
opabssxp |
|- { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } C_ ( P X. ( P ^m ( 0 ..^ 3 ) ) ) |
77 |
75 76
|
ssexi |
|- { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } e. _V |
78 |
71 72 77
|
fvmpt |
|- ( G e. _V -> ( inA ` G ) = { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } ) |
79 |
8 51 78
|
3syl |
|- ( ph -> ( inA ` G ) = { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } ) |
80 |
79
|
breqd |
|- ( ph -> ( X ( inA ` G ) <" A B C "> <-> X { <. p , t >. | ( ( p e. P /\ t e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. P ( x e. ( ( t ` 0 ) I ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( K ` ( t ` 1 ) ) p ) ) ) ) } <" A B C "> ) ) |
81 |
5 6 7
|
s3cld |
|- ( ph -> <" A B C "> e. Word P ) |
82 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
83 |
|
3nn0 |
|- 3 e. NN0 |
84 |
|
wrdmap |
|- ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
85 |
73 83 84
|
mp2an |
|- ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
86 |
81 82 85
|
sylanblc |
|- ( ph -> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
87 |
4 86
|
jca |
|- ( ph -> ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
88 |
87
|
biantrurd |
|- ( ph -> ( ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) <-> ( ( X e. P /\ <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) ) |
89 |
50 80 88
|
3bitr4d |
|- ( ph -> ( X ( inA ` G ) <" A B C "> <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) |