| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cinag |  |-  inA | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vp |  |-  p | 
						
							| 4 |  | vt |  |-  t | 
						
							| 5 | 3 | cv |  |-  p | 
						
							| 6 |  | cbs |  |-  Base | 
						
							| 7 | 1 | cv |  |-  g | 
						
							| 8 | 7 6 | cfv |  |-  ( Base ` g ) | 
						
							| 9 | 5 8 | wcel |  |-  p e. ( Base ` g ) | 
						
							| 10 | 4 | cv |  |-  t | 
						
							| 11 |  | cmap |  |-  ^m | 
						
							| 12 |  | cc0 |  |-  0 | 
						
							| 13 |  | cfzo |  |-  ..^ | 
						
							| 14 |  | c3 |  |-  3 | 
						
							| 15 | 12 14 13 | co |  |-  ( 0 ..^ 3 ) | 
						
							| 16 | 8 15 11 | co |  |-  ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | 
						
							| 17 | 10 16 | wcel |  |-  t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | 
						
							| 18 | 9 17 | wa |  |-  ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) | 
						
							| 19 | 12 10 | cfv |  |-  ( t ` 0 ) | 
						
							| 20 |  | c1 |  |-  1 | 
						
							| 21 | 20 10 | cfv |  |-  ( t ` 1 ) | 
						
							| 22 | 19 21 | wne |  |-  ( t ` 0 ) =/= ( t ` 1 ) | 
						
							| 23 |  | c2 |  |-  2 | 
						
							| 24 | 23 10 | cfv |  |-  ( t ` 2 ) | 
						
							| 25 | 24 21 | wne |  |-  ( t ` 2 ) =/= ( t ` 1 ) | 
						
							| 26 | 5 21 | wne |  |-  p =/= ( t ` 1 ) | 
						
							| 27 | 22 25 26 | w3a |  |-  ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) | 
						
							| 28 |  | vx |  |-  x | 
						
							| 29 | 28 | cv |  |-  x | 
						
							| 30 |  | citv |  |-  Itv | 
						
							| 31 | 7 30 | cfv |  |-  ( Itv ` g ) | 
						
							| 32 | 19 24 31 | co |  |-  ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) | 
						
							| 33 | 29 32 | wcel |  |-  x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) | 
						
							| 34 | 29 21 | wceq |  |-  x = ( t ` 1 ) | 
						
							| 35 |  | chlg |  |-  hlG | 
						
							| 36 | 7 35 | cfv |  |-  ( hlG ` g ) | 
						
							| 37 | 21 36 | cfv |  |-  ( ( hlG ` g ) ` ( t ` 1 ) ) | 
						
							| 38 | 29 5 37 | wbr |  |-  x ( ( hlG ` g ) ` ( t ` 1 ) ) p | 
						
							| 39 | 34 38 | wo |  |-  ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) | 
						
							| 40 | 33 39 | wa |  |-  ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) | 
						
							| 41 | 40 28 8 | wrex |  |-  E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) | 
						
							| 42 | 27 41 | wa |  |-  ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) | 
						
							| 43 | 18 42 | wa |  |-  ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) | 
						
							| 44 | 43 3 4 | copab |  |-  { <. p , t >. | ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) } | 
						
							| 45 | 1 2 44 | cmpt |  |-  ( g e. _V |-> { <. p , t >. | ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) } ) | 
						
							| 46 | 0 45 | wceq |  |-  inA = ( g e. _V |-> { <. p , t >. | ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) } ) |