| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cinag |
|- inA |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vp |
|- p |
| 4 |
|
vt |
|- t |
| 5 |
3
|
cv |
|- p |
| 6 |
|
cbs |
|- Base |
| 7 |
1
|
cv |
|- g |
| 8 |
7 6
|
cfv |
|- ( Base ` g ) |
| 9 |
5 8
|
wcel |
|- p e. ( Base ` g ) |
| 10 |
4
|
cv |
|- t |
| 11 |
|
cmap |
|- ^m |
| 12 |
|
cc0 |
|- 0 |
| 13 |
|
cfzo |
|- ..^ |
| 14 |
|
c3 |
|- 3 |
| 15 |
12 14 13
|
co |
|- ( 0 ..^ 3 ) |
| 16 |
8 15 11
|
co |
|- ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) |
| 17 |
10 16
|
wcel |
|- t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) |
| 18 |
9 17
|
wa |
|- ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) |
| 19 |
12 10
|
cfv |
|- ( t ` 0 ) |
| 20 |
|
c1 |
|- 1 |
| 21 |
20 10
|
cfv |
|- ( t ` 1 ) |
| 22 |
19 21
|
wne |
|- ( t ` 0 ) =/= ( t ` 1 ) |
| 23 |
|
c2 |
|- 2 |
| 24 |
23 10
|
cfv |
|- ( t ` 2 ) |
| 25 |
24 21
|
wne |
|- ( t ` 2 ) =/= ( t ` 1 ) |
| 26 |
5 21
|
wne |
|- p =/= ( t ` 1 ) |
| 27 |
22 25 26
|
w3a |
|- ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) |
| 28 |
|
vx |
|- x |
| 29 |
28
|
cv |
|- x |
| 30 |
|
citv |
|- Itv |
| 31 |
7 30
|
cfv |
|- ( Itv ` g ) |
| 32 |
19 24 31
|
co |
|- ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) |
| 33 |
29 32
|
wcel |
|- x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) |
| 34 |
29 21
|
wceq |
|- x = ( t ` 1 ) |
| 35 |
|
chlg |
|- hlG |
| 36 |
7 35
|
cfv |
|- ( hlG ` g ) |
| 37 |
21 36
|
cfv |
|- ( ( hlG ` g ) ` ( t ` 1 ) ) |
| 38 |
29 5 37
|
wbr |
|- x ( ( hlG ` g ) ` ( t ` 1 ) ) p |
| 39 |
34 38
|
wo |
|- ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) |
| 40 |
33 39
|
wa |
|- ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) |
| 41 |
40 28 8
|
wrex |
|- E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) |
| 42 |
27 41
|
wa |
|- ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) |
| 43 |
18 42
|
wa |
|- ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) |
| 44 |
43 3 4
|
copab |
|- { <. p , t >. | ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) } |
| 45 |
1 2 44
|
cmpt |
|- ( g e. _V |-> { <. p , t >. | ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) } ) |
| 46 |
0 45
|
wceq |
|- inA = ( g e. _V |-> { <. p , t >. | ( ( p e. ( Base ` g ) /\ t e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ ( ( ( t ` 0 ) =/= ( t ` 1 ) /\ ( t ` 2 ) =/= ( t ` 1 ) /\ p =/= ( t ` 1 ) ) /\ E. x e. ( Base ` g ) ( x e. ( ( t ` 0 ) ( Itv ` g ) ( t ` 2 ) ) /\ ( x = ( t ` 1 ) \/ x ( ( hlG ` g ) ` ( t ` 1 ) ) p ) ) ) ) } ) |