Metamath Proof Explorer


Definition df-inag

Description: Definition of the geometrical "in angle" relation. (Contributed by Thierry Arnoux, 15-Aug-2020)

Ref Expression
Assertion df-inag 𝒢 = g V p t | p Base g t Base g 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinag class 𝒢
1 vg setvar g
2 cvv class V
3 vp setvar p
4 vt setvar t
5 3 cv setvar p
6 cbs class Base
7 1 cv setvar g
8 7 6 cfv class Base g
9 5 8 wcel wff p Base g
10 4 cv setvar t
11 cmap class 𝑚
12 cc0 class 0
13 cfzo class ..^
14 c3 class 3
15 12 14 13 co class 0 ..^ 3
16 8 15 11 co class Base g 0 ..^ 3
17 10 16 wcel wff t Base g 0 ..^ 3
18 9 17 wa wff p Base g t Base g 0 ..^ 3
19 12 10 cfv class t 0
20 c1 class 1
21 20 10 cfv class t 1
22 19 21 wne wff t 0 t 1
23 c2 class 2
24 23 10 cfv class t 2
25 24 21 wne wff t 2 t 1
26 5 21 wne wff p t 1
27 22 25 26 w3a wff t 0 t 1 t 2 t 1 p t 1
28 vx setvar x
29 28 cv setvar x
30 citv class Itv
31 7 30 cfv class Itv g
32 19 24 31 co class t 0 Itv g t 2
33 29 32 wcel wff x t 0 Itv g t 2
34 29 21 wceq wff x = t 1
35 chlg class hl 𝒢
36 7 35 cfv class hl 𝒢 g
37 21 36 cfv class hl 𝒢 g t 1
38 29 5 37 wbr wff x hl 𝒢 g t 1 p
39 34 38 wo wff x = t 1 x hl 𝒢 g t 1 p
40 33 39 wa wff x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p
41 40 28 8 wrex wff x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p
42 27 41 wa wff t 0 t 1 t 2 t 1 p t 1 x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p
43 18 42 wa wff p Base g t Base g 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p
44 43 3 4 copab class p t | p Base g t Base g 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p
45 1 2 44 cmpt class g V p t | p Base g t Base g 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p
46 0 45 wceq wff 𝒢 = g V p t | p Base g t Base g 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p