Metamath Proof Explorer


Definition df-inag

Description: Definition of the geometrical "in angle" relation. (Contributed by Thierry Arnoux, 15-Aug-2020)

Ref Expression
Assertion df-inag 𝒢=gVpt|pBasegtBaseg0..^3t0t1t2t1pt1xBasegxt0Itvgt2x=t1xhl𝒢gt1p

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinag class𝒢
1 vg setvarg
2 cvv classV
3 vp setvarp
4 vt setvart
5 3 cv setvarp
6 cbs classBase
7 1 cv setvarg
8 7 6 cfv classBaseg
9 5 8 wcel wffpBaseg
10 4 cv setvart
11 cmap class𝑚
12 cc0 class0
13 cfzo class..^
14 c3 class3
15 12 14 13 co class0..^3
16 8 15 11 co classBaseg0..^3
17 10 16 wcel wfftBaseg0..^3
18 9 17 wa wffpBasegtBaseg0..^3
19 12 10 cfv classt0
20 c1 class1
21 20 10 cfv classt1
22 19 21 wne wfft0t1
23 c2 class2
24 23 10 cfv classt2
25 24 21 wne wfft2t1
26 5 21 wne wffpt1
27 22 25 26 w3a wfft0t1t2t1pt1
28 vx setvarx
29 28 cv setvarx
30 citv classItv
31 7 30 cfv classItvg
32 19 24 31 co classt0Itvgt2
33 29 32 wcel wffxt0Itvgt2
34 29 21 wceq wffx=t1
35 chlg classhl𝒢
36 7 35 cfv classhl𝒢g
37 21 36 cfv classhl𝒢gt1
38 29 5 37 wbr wffxhl𝒢gt1p
39 34 38 wo wffx=t1xhl𝒢gt1p
40 33 39 wa wffxt0Itvgt2x=t1xhl𝒢gt1p
41 40 28 8 wrex wffxBasegxt0Itvgt2x=t1xhl𝒢gt1p
42 27 41 wa wfft0t1t2t1pt1xBasegxt0Itvgt2x=t1xhl𝒢gt1p
43 18 42 wa wffpBasegtBaseg0..^3t0t1t2t1pt1xBasegxt0Itvgt2x=t1xhl𝒢gt1p
44 43 3 4 copab classpt|pBasegtBaseg0..^3t0t1t2t1pt1xBasegxt0Itvgt2x=t1xhl𝒢gt1p
45 1 2 44 cmpt classgVpt|pBasegtBaseg0..^3t0t1t2t1pt1xBasegxt0Itvgt2x=t1xhl𝒢gt1p
46 0 45 wceq wff𝒢=gVpt|pBasegtBaseg0..^3t0t1t2t1pt1xBasegxt0Itvgt2x=t1xhl𝒢gt1p