Metamath Proof Explorer


Theorem isinag

Description: Property for point X to lie in the angle <" A B C "> . Definition 11.23 of Schwabhauser p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020)

Ref Expression
Hypotheses isinag.p P = Base G
isinag.i I = Itv G
isinag.k K = hl 𝒢 G
isinag.x φ X P
isinag.a φ A P
isinag.b φ B P
isinag.c φ C P
isinag.g φ G V
Assertion isinag φ X 𝒢 G ⟨“ ABC ”⟩ A B C B X B x P x A I C x = B x K B X

Proof

Step Hyp Ref Expression
1 isinag.p P = Base G
2 isinag.i I = Itv G
3 isinag.k K = hl 𝒢 G
4 isinag.x φ X P
5 isinag.a φ A P
6 isinag.b φ B P
7 isinag.c φ C P
8 isinag.g φ G V
9 simpr p = X t = ⟨“ ABC ”⟩ t = ⟨“ ABC ”⟩
10 9 fveq1d p = X t = ⟨“ ABC ”⟩ t 0 = ⟨“ ABC ”⟩ 0
11 9 fveq1d p = X t = ⟨“ ABC ”⟩ t 1 = ⟨“ ABC ”⟩ 1
12 10 11 neeq12d p = X t = ⟨“ ABC ”⟩ t 0 t 1 ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1
13 9 fveq1d p = X t = ⟨“ ABC ”⟩ t 2 = ⟨“ ABC ”⟩ 2
14 13 11 neeq12d p = X t = ⟨“ ABC ”⟩ t 2 t 1 ⟨“ ABC ”⟩ 2 ⟨“ ABC ”⟩ 1
15 simpl p = X t = ⟨“ ABC ”⟩ p = X
16 15 11 neeq12d p = X t = ⟨“ ABC ”⟩ p t 1 X ⟨“ ABC ”⟩ 1
17 12 14 16 3anbi123d p = X t = ⟨“ ABC ”⟩ t 0 t 1 t 2 t 1 p t 1 ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 ⟨“ ABC ”⟩ 1 X ⟨“ ABC ”⟩ 1
18 10 13 oveq12d p = X t = ⟨“ ABC ”⟩ t 0 I t 2 = ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2
19 18 eleq2d p = X t = ⟨“ ABC ”⟩ x t 0 I t 2 x ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2
20 11 eqeq2d p = X t = ⟨“ ABC ”⟩ x = t 1 x = ⟨“ ABC ”⟩ 1
21 eqidd p = X t = ⟨“ ABC ”⟩ x = x
22 11 fveq2d p = X t = ⟨“ ABC ”⟩ K t 1 = K ⟨“ ABC ”⟩ 1
23 21 22 15 breq123d p = X t = ⟨“ ABC ”⟩ x K t 1 p x K ⟨“ ABC ”⟩ 1 X
24 20 23 orbi12d p = X t = ⟨“ ABC ”⟩ x = t 1 x K t 1 p x = ⟨“ ABC ”⟩ 1 x K ⟨“ ABC ”⟩ 1 X
25 19 24 anbi12d p = X t = ⟨“ ABC ”⟩ x t 0 I t 2 x = t 1 x K t 1 p x ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2 x = ⟨“ ABC ”⟩ 1 x K ⟨“ ABC ”⟩ 1 X
26 25 rexbidv p = X t = ⟨“ ABC ”⟩ x P x t 0 I t 2 x = t 1 x K t 1 p x P x ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2 x = ⟨“ ABC ”⟩ 1 x K ⟨“ ABC ”⟩ 1 X
27 17 26 anbi12d p = X t = ⟨“ ABC ”⟩ t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 ⟨“ ABC ”⟩ 1 X ⟨“ ABC ”⟩ 1 x P x ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2 x = ⟨“ ABC ”⟩ 1 x K ⟨“ ABC ”⟩ 1 X
28 eqid p t | p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p = p t | p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p
29 27 28 brab2a X p t | p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p ⟨“ ABC ”⟩ X P ⟨“ ABC ”⟩ P 0 ..^ 3 ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 ⟨“ ABC ”⟩ 1 X ⟨“ ABC ”⟩ 1 x P x ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2 x = ⟨“ ABC ”⟩ 1 x K ⟨“ ABC ”⟩ 1 X
30 s3fv0 A P ⟨“ ABC ”⟩ 0 = A
31 5 30 syl φ ⟨“ ABC ”⟩ 0 = A
32 s3fv1 B P ⟨“ ABC ”⟩ 1 = B
33 6 32 syl φ ⟨“ ABC ”⟩ 1 = B
34 31 33 neeq12d φ ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 A B
35 s3fv2 C P ⟨“ ABC ”⟩ 2 = C
36 7 35 syl φ ⟨“ ABC ”⟩ 2 = C
37 36 33 neeq12d φ ⟨“ ABC ”⟩ 2 ⟨“ ABC ”⟩ 1 C B
38 33 neeq2d φ X ⟨“ ABC ”⟩ 1 X B
39 34 37 38 3anbi123d φ ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 ⟨“ ABC ”⟩ 1 X ⟨“ ABC ”⟩ 1 A B C B X B
40 31 36 oveq12d φ ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2 = A I C
41 40 eleq2d φ x ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2 x A I C
42 33 eqeq2d φ x = ⟨“ ABC ”⟩ 1 x = B
43 33 fveq2d φ K ⟨“ ABC ”⟩ 1 = K B
44 43 breqd φ x K ⟨“ ABC ”⟩ 1 X x K B X
45 42 44 orbi12d φ x = ⟨“ ABC ”⟩ 1 x K ⟨“ ABC ”⟩ 1 X x = B x K B X
46 41 45 anbi12d φ x ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2 x = ⟨“ ABC ”⟩ 1 x K ⟨“ ABC ”⟩ 1 X x A I C x = B x K B X
47 46 rexbidv φ x P x ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2 x = ⟨“ ABC ”⟩ 1 x K ⟨“ ABC ”⟩ 1 X x P x A I C x = B x K B X
48 39 47 anbi12d φ ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 ⟨“ ABC ”⟩ 1 X ⟨“ ABC ”⟩ 1 x P x ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2 x = ⟨“ ABC ”⟩ 1 x K ⟨“ ABC ”⟩ 1 X A B C B X B x P x A I C x = B x K B X
49 48 anbi2d φ X P ⟨“ ABC ”⟩ P 0 ..^ 3 ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 ⟨“ ABC ”⟩ 1 X ⟨“ ABC ”⟩ 1 x P x ⟨“ ABC ”⟩ 0 I ⟨“ ABC ”⟩ 2 x = ⟨“ ABC ”⟩ 1 x K ⟨“ ABC ”⟩ 1 X X P ⟨“ ABC ”⟩ P 0 ..^ 3 A B C B X B x P x A I C x = B x K B X
50 29 49 syl5bb φ X p t | p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p ⟨“ ABC ”⟩ X P ⟨“ ABC ”⟩ P 0 ..^ 3 A B C B X B x P x A I C x = B x K B X
51 elex G V G V
52 fveq2 g = G Base g = Base G
53 52 1 eqtr4di g = G Base g = P
54 53 eleq2d g = G p Base g p P
55 53 oveq1d g = G Base g 0 ..^ 3 = P 0 ..^ 3
56 55 eleq2d g = G t Base g 0 ..^ 3 t P 0 ..^ 3
57 54 56 anbi12d g = G p Base g t Base g 0 ..^ 3 p P t P 0 ..^ 3
58 fveq2 g = G Itv g = Itv G
59 58 2 eqtr4di g = G Itv g = I
60 59 oveqd g = G t 0 Itv g t 2 = t 0 I t 2
61 60 eleq2d g = G x t 0 Itv g t 2 x t 0 I t 2
62 fveq2 g = G hl 𝒢 g = hl 𝒢 G
63 62 3 eqtr4di g = G hl 𝒢 g = K
64 63 fveq1d g = G hl 𝒢 g t 1 = K t 1
65 64 breqd g = G x hl 𝒢 g t 1 p x K t 1 p
66 65 orbi2d g = G x = t 1 x hl 𝒢 g t 1 p x = t 1 x K t 1 p
67 61 66 anbi12d g = G x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p x t 0 I t 2 x = t 1 x K t 1 p
68 53 67 rexeqbidv g = G x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p x P x t 0 I t 2 x = t 1 x K t 1 p
69 68 anbi2d g = G t 0 t 1 t 2 t 1 p t 1 x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p
70 57 69 anbi12d g = G p Base g t Base g 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p
71 70 opabbidv g = G p t | p Base g t Base g 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p = p t | p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p
72 df-inag 𝒢 = g V p t | p Base g t Base g 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x Base g x t 0 Itv g t 2 x = t 1 x hl 𝒢 g t 1 p
73 1 fvexi P V
74 ovex P 0 ..^ 3 V
75 73 74 xpex P × P 0 ..^ 3 V
76 opabssxp p t | p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p P × P 0 ..^ 3
77 75 76 ssexi p t | p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p V
78 71 72 77 fvmpt G V 𝒢 G = p t | p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p
79 8 51 78 3syl φ 𝒢 G = p t | p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p
80 79 breqd φ X 𝒢 G ⟨“ ABC ”⟩ X p t | p P t P 0 ..^ 3 t 0 t 1 t 2 t 1 p t 1 x P x t 0 I t 2 x = t 1 x K t 1 p ⟨“ ABC ”⟩
81 5 6 7 s3cld φ ⟨“ ABC ”⟩ Word P
82 s3len ⟨“ ABC ”⟩ = 3
83 3nn0 3 0
84 wrdmap P V 3 0 ⟨“ ABC ”⟩ Word P ⟨“ ABC ”⟩ = 3 ⟨“ ABC ”⟩ P 0 ..^ 3
85 73 83 84 mp2an ⟨“ ABC ”⟩ Word P ⟨“ ABC ”⟩ = 3 ⟨“ ABC ”⟩ P 0 ..^ 3
86 81 82 85 sylanblc φ ⟨“ ABC ”⟩ P 0 ..^ 3
87 4 86 jca φ X P ⟨“ ABC ”⟩ P 0 ..^ 3
88 87 biantrurd φ A B C B X B x P x A I C x = B x K B X X P ⟨“ ABC ”⟩ P 0 ..^ 3 A B C B X B x P x A I C x = B x K B X
89 50 80 88 3bitr4d φ X 𝒢 G ⟨“ ABC ”⟩ A B C B X B x P x A I C x = B x K B X