Metamath Proof Explorer


Theorem isinagd

Description: Sufficient conditions for in-angle relation, deduction version. (Contributed by Thierry Arnoux, 20-Oct-2020)

Ref Expression
Hypotheses isinag.p P = Base G
isinag.i I = Itv G
isinag.k K = hl 𝒢 G
isinag.x φ X P
isinag.a φ A P
isinag.b φ B P
isinag.c φ C P
isinagd.g φ G V
isinagd.y φ Y P
isinagd.1 φ A B
isinagd.2 φ C B
isinagd.3 φ X B
isinagd.4 φ Y A I C
isinagd.5 φ Y = B Y K B X
Assertion isinagd φ X 𝒢 G ⟨“ ABC ”⟩

Proof

Step Hyp Ref Expression
1 isinag.p P = Base G
2 isinag.i I = Itv G
3 isinag.k K = hl 𝒢 G
4 isinag.x φ X P
5 isinag.a φ A P
6 isinag.b φ B P
7 isinag.c φ C P
8 isinagd.g φ G V
9 isinagd.y φ Y P
10 isinagd.1 φ A B
11 isinagd.2 φ C B
12 isinagd.3 φ X B
13 isinagd.4 φ Y A I C
14 isinagd.5 φ Y = B Y K B X
15 10 11 12 3jca φ A B C B X B
16 simpr φ x = Y x = Y
17 eqidd φ x = Y A I C = A I C
18 16 17 eleq12d φ x = Y x A I C Y A I C
19 eqidd φ x = Y B = B
20 16 19 eqeq12d φ x = Y x = B Y = B
21 16 breq1d φ x = Y x K B X Y K B X
22 20 21 orbi12d φ x = Y x = B x K B X Y = B Y K B X
23 18 22 anbi12d φ x = Y x A I C x = B x K B X Y A I C Y = B Y K B X
24 13 14 jca φ Y A I C Y = B Y K B X
25 9 23 24 rspcedvd φ x P x A I C x = B x K B X
26 15 25 jca φ A B C B X B x P x A I C x = B x K B X
27 1 2 3 4 5 6 7 8 isinag φ X 𝒢 G ⟨“ ABC ”⟩ A B C B X B x P x A I C x = B x K B X
28 26 27 mpbird φ X 𝒢 G ⟨“ ABC ”⟩