Metamath Proof Explorer


Theorem isinagd

Description: Sufficient conditions for in-angle relation, deduction version. (Contributed by Thierry Arnoux, 20-Oct-2020)

Ref Expression
Hypotheses isinag.p P=BaseG
isinag.i I=ItvG
isinag.k K=hl𝒢G
isinag.x φXP
isinag.a φAP
isinag.b φBP
isinag.c φCP
isinagd.g φGV
isinagd.y φYP
isinagd.1 φAB
isinagd.2 φCB
isinagd.3 φXB
isinagd.4 φYAIC
isinagd.5 φY=BYKBX
Assertion isinagd φX𝒢G⟨“ABC”⟩

Proof

Step Hyp Ref Expression
1 isinag.p P=BaseG
2 isinag.i I=ItvG
3 isinag.k K=hl𝒢G
4 isinag.x φXP
5 isinag.a φAP
6 isinag.b φBP
7 isinag.c φCP
8 isinagd.g φGV
9 isinagd.y φYP
10 isinagd.1 φAB
11 isinagd.2 φCB
12 isinagd.3 φXB
13 isinagd.4 φYAIC
14 isinagd.5 φY=BYKBX
15 10 11 12 3jca φABCBXB
16 simpr φx=Yx=Y
17 eqidd φx=YAIC=AIC
18 16 17 eleq12d φx=YxAICYAIC
19 eqidd φx=YB=B
20 16 19 eqeq12d φx=Yx=BY=B
21 16 breq1d φx=YxKBXYKBX
22 20 21 orbi12d φx=Yx=BxKBXY=BYKBX
23 18 22 anbi12d φx=YxAICx=BxKBXYAICY=BYKBX
24 13 14 jca φYAICY=BYKBX
25 9 23 24 rspcedvd φxPxAICx=BxKBX
26 15 25 jca φABCBXBxPxAICx=BxKBX
27 1 2 3 4 5 6 7 8 isinag φX𝒢G⟨“ABC”⟩ABCBXBxPxAICx=BxKBX
28 26 27 mpbird φX𝒢G⟨“ABC”⟩