Step |
Hyp |
Ref |
Expression |
1 |
|
isinag.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
isinag.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
isinag.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
4 |
|
isinag.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
5 |
|
isinag.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
isinag.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
isinag.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
isinagd.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
9 |
|
isinagd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
10 |
|
isinagd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
11 |
|
isinagd.2 |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
12 |
|
isinagd.3 |
⊢ ( 𝜑 → 𝑋 ≠ 𝐵 ) |
13 |
|
isinagd.4 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 𝐼 𝐶 ) ) |
14 |
|
isinagd.5 |
⊢ ( 𝜑 → ( 𝑌 = 𝐵 ∨ 𝑌 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) |
15 |
10 11 12
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵 ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → 𝑥 = 𝑌 ) |
17 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝐴 𝐼 𝐶 ) = ( 𝐴 𝐼 𝐶 ) ) |
18 |
16 17
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ↔ 𝑌 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
19 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → 𝐵 = 𝐵 ) |
20 |
16 19
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑥 = 𝐵 ↔ 𝑌 = 𝐵 ) ) |
21 |
16
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ↔ 𝑌 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) |
22 |
20 21
|
orbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ↔ ( 𝑌 = 𝐵 ∨ 𝑌 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) |
23 |
18 22
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ↔ ( 𝑌 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑌 = 𝐵 ∨ 𝑌 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) |
24 |
13 14
|
jca |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑌 = 𝐵 ∨ 𝑌 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) |
25 |
9 23 24
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) |
26 |
15 25
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) |
27 |
1 2 3 4 5 6 7 8
|
isinag |
⊢ ( 𝜑 → ( 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ↔ ( ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) ) |
28 |
26 27
|
mpbird |
⊢ ( 𝜑 → 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |