Metamath Proof Explorer


Theorem isinagd

Description: Sufficient conditions for in-angle relation, deduction version. (Contributed by Thierry Arnoux, 20-Oct-2020)

Ref Expression
Hypotheses isinag.p 𝑃 = ( Base ‘ 𝐺 )
isinag.i 𝐼 = ( Itv ‘ 𝐺 )
isinag.k 𝐾 = ( hlG ‘ 𝐺 )
isinag.x ( 𝜑𝑋𝑃 )
isinag.a ( 𝜑𝐴𝑃 )
isinag.b ( 𝜑𝐵𝑃 )
isinag.c ( 𝜑𝐶𝑃 )
isinagd.g ( 𝜑𝐺𝑉 )
isinagd.y ( 𝜑𝑌𝑃 )
isinagd.1 ( 𝜑𝐴𝐵 )
isinagd.2 ( 𝜑𝐶𝐵 )
isinagd.3 ( 𝜑𝑋𝐵 )
isinagd.4 ( 𝜑𝑌 ∈ ( 𝐴 𝐼 𝐶 ) )
isinagd.5 ( 𝜑 → ( 𝑌 = 𝐵𝑌 ( 𝐾𝐵 ) 𝑋 ) )
Assertion isinagd ( 𝜑𝑋 ( inA ‘ 𝐺 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ )

Proof

Step Hyp Ref Expression
1 isinag.p 𝑃 = ( Base ‘ 𝐺 )
2 isinag.i 𝐼 = ( Itv ‘ 𝐺 )
3 isinag.k 𝐾 = ( hlG ‘ 𝐺 )
4 isinag.x ( 𝜑𝑋𝑃 )
5 isinag.a ( 𝜑𝐴𝑃 )
6 isinag.b ( 𝜑𝐵𝑃 )
7 isinag.c ( 𝜑𝐶𝑃 )
8 isinagd.g ( 𝜑𝐺𝑉 )
9 isinagd.y ( 𝜑𝑌𝑃 )
10 isinagd.1 ( 𝜑𝐴𝐵 )
11 isinagd.2 ( 𝜑𝐶𝐵 )
12 isinagd.3 ( 𝜑𝑋𝐵 )
13 isinagd.4 ( 𝜑𝑌 ∈ ( 𝐴 𝐼 𝐶 ) )
14 isinagd.5 ( 𝜑 → ( 𝑌 = 𝐵𝑌 ( 𝐾𝐵 ) 𝑋 ) )
15 10 11 12 3jca ( 𝜑 → ( 𝐴𝐵𝐶𝐵𝑋𝐵 ) )
16 simpr ( ( 𝜑𝑥 = 𝑌 ) → 𝑥 = 𝑌 )
17 eqidd ( ( 𝜑𝑥 = 𝑌 ) → ( 𝐴 𝐼 𝐶 ) = ( 𝐴 𝐼 𝐶 ) )
18 16 17 eleq12d ( ( 𝜑𝑥 = 𝑌 ) → ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ↔ 𝑌 ∈ ( 𝐴 𝐼 𝐶 ) ) )
19 eqidd ( ( 𝜑𝑥 = 𝑌 ) → 𝐵 = 𝐵 )
20 16 19 eqeq12d ( ( 𝜑𝑥 = 𝑌 ) → ( 𝑥 = 𝐵𝑌 = 𝐵 ) )
21 16 breq1d ( ( 𝜑𝑥 = 𝑌 ) → ( 𝑥 ( 𝐾𝐵 ) 𝑋𝑌 ( 𝐾𝐵 ) 𝑋 ) )
22 20 21 orbi12d ( ( 𝜑𝑥 = 𝑌 ) → ( ( 𝑥 = 𝐵𝑥 ( 𝐾𝐵 ) 𝑋 ) ↔ ( 𝑌 = 𝐵𝑌 ( 𝐾𝐵 ) 𝑋 ) ) )
23 18 22 anbi12d ( ( 𝜑𝑥 = 𝑌 ) → ( ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵𝑥 ( 𝐾𝐵 ) 𝑋 ) ) ↔ ( 𝑌 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑌 = 𝐵𝑌 ( 𝐾𝐵 ) 𝑋 ) ) ) )
24 13 14 jca ( 𝜑 → ( 𝑌 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑌 = 𝐵𝑌 ( 𝐾𝐵 ) 𝑋 ) ) )
25 9 23 24 rspcedvd ( 𝜑 → ∃ 𝑥𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵𝑥 ( 𝐾𝐵 ) 𝑋 ) ) )
26 15 25 jca ( 𝜑 → ( ( 𝐴𝐵𝐶𝐵𝑋𝐵 ) ∧ ∃ 𝑥𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵𝑥 ( 𝐾𝐵 ) 𝑋 ) ) ) )
27 1 2 3 4 5 6 7 8 isinag ( 𝜑 → ( 𝑋 ( inA ‘ 𝐺 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ ↔ ( ( 𝐴𝐵𝐶𝐵𝑋𝐵 ) ∧ ∃ 𝑥𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵𝑥 ( 𝐾𝐵 ) 𝑋 ) ) ) ) )
28 26 27 mpbird ( 𝜑𝑋 ( inA ‘ 𝐺 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ )