Metamath Proof Explorer
Description: Any point lies in a flat angle. (Contributed by Thierry Arnoux, 13-Feb-2023)
|
|
Ref |
Expression |
|
Hypotheses |
isinag.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
isinag.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
isinag.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
|
|
isinag.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
|
|
isinag.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
|
|
isinag.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
|
|
isinag.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
|
|
inagflat.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
inagflat.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
|
|
inagflat.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
|
|
inagflat.2 |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
|
|
inagflat.3 |
⊢ ( 𝜑 → 𝑋 ≠ 𝐵 ) |
|
|
inagflat.4 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
|
Assertion |
inagflat |
⊢ ( 𝜑 → 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
isinag.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
isinag.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
isinag.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
4 |
|
isinag.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
5 |
|
isinag.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
isinag.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
isinag.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
inagflat.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
9 |
|
inagflat.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
10 |
|
inagflat.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
11 |
|
inagflat.2 |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
12 |
|
inagflat.3 |
⊢ ( 𝜑 → 𝑋 ≠ 𝐵 ) |
13 |
|
inagflat.4 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
14 |
|
eqidd |
⊢ ( 𝜑 → 𝐵 = 𝐵 ) |
15 |
14
|
orcd |
⊢ ( 𝜑 → ( 𝐵 = 𝐵 ∨ 𝐵 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) |
16 |
1 2 3 4 5 6 7 8 6 10 11 12 13 15
|
isinagd |
⊢ ( 𝜑 → 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |