| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isinag.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | isinag.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | isinag.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | isinag.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 5 |  | isinag.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | isinag.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | isinag.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | inagflat.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 9 |  | inagswap.1 | ⊢ ( 𝜑  →  𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 | isinag | ⊢ ( 𝜑  →  ( 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ↔  ( ( 𝐴  ≠  𝐵  ∧  𝐶  ≠  𝐵  ∧  𝑋  ≠  𝐵 )  ∧  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐶 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) ) | 
						
							| 11 | 9 10 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐵  ∧  𝐶  ≠  𝐵  ∧  𝑋  ≠  𝐵 )  ∧  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐶 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) | 
						
							| 12 | 11 | simpld | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐶  ≠  𝐵  ∧  𝑋  ≠  𝐵 ) ) | 
						
							| 13 | 12 | simp2d | ⊢ ( 𝜑  →  𝐶  ≠  𝐵 ) | 
						
							| 14 | 12 | simp1d | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 15 | 12 | simp3d | ⊢ ( 𝜑  →  𝑋  ≠  𝐵 ) | 
						
							| 16 | 13 14 15 | 3jca | ⊢ ( 𝜑  →  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  𝑋  ≠  𝐵 ) ) | 
						
							| 17 | 11 | simprd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐶 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 19 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑃  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 20 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑃  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 21 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑃  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝑥  ∈  𝑃 ) | 
						
							| 22 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑃  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 23 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑃  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝑥  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 24 | 1 18 2 19 20 21 22 23 | tgbtwncom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑃  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝑥  ∈  ( 𝐶 𝐼 𝐴 ) ) | 
						
							| 25 | 24 | 3expia | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  →  ( 𝑥  ∈  ( 𝐴 𝐼 𝐶 )  →  𝑥  ∈  ( 𝐶 𝐼 𝐴 ) ) ) | 
						
							| 26 | 25 | anim1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  →  ( ( 𝑥  ∈  ( 𝐴 𝐼 𝐶 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) )  →  ( 𝑥  ∈  ( 𝐶 𝐼 𝐴 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) | 
						
							| 27 | 26 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐶 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐶 𝐼 𝐴 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) | 
						
							| 28 | 17 27 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐶 𝐼 𝐴 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) | 
						
							| 29 | 1 2 3 4 7 6 5 8 | isinag | ⊢ ( 𝜑  →  ( 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉  ↔  ( ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  𝑋  ≠  𝐵 )  ∧  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐶 𝐼 𝐴 )  ∧  ( 𝑥  =  𝐵  ∨  𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) ) | 
						
							| 30 | 16 28 29 | mpbir2and | ⊢ ( 𝜑  →  𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉 ) |