| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinag.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
isinag.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
isinag.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
| 4 |
|
isinag.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 5 |
|
isinag.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
isinag.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
isinag.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
inagflat.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 9 |
|
inagswap.1 |
⊢ ( 𝜑 → 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
| 10 |
1 2 3 4 5 6 7 8
|
isinag |
⊢ ( 𝜑 → ( 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ↔ ( ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) ) |
| 11 |
9 10
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) |
| 12 |
11
|
simpld |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵 ) ) |
| 13 |
12
|
simp2d |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
| 14 |
12
|
simp1d |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 15 |
12
|
simp3d |
⊢ ( 𝜑 → 𝑋 ≠ 𝐵 ) |
| 16 |
13 14 15
|
3jca |
⊢ ( 𝜑 → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵 ) ) |
| 17 |
11
|
simprd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) |
| 18 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 19 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
| 20 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
| 21 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝑥 ∈ 𝑃 ) |
| 22 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
| 23 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 24 |
1 18 2 19 20 21 22 23
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) |
| 25 |
24
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) → ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) → 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
| 26 |
25
|
anim1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) → ( ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) → ( 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) |
| 27 |
26
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) |
| 28 |
17 27
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) |
| 29 |
1 2 3 4 7 6 5 8
|
isinag |
⊢ ( 𝜑 → ( 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉 ↔ ( ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ∧ ( 𝑥 = 𝐵 ∨ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) ) ) ) |
| 30 |
16 28 29
|
mpbir2and |
⊢ ( 𝜑 → 𝑋 ( inA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉 ) |