| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isinag.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | isinag.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | isinag.k |  |-  K = ( hlG ` G ) | 
						
							| 4 |  | isinag.x |  |-  ( ph -> X e. P ) | 
						
							| 5 |  | isinag.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | isinag.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | isinag.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | inagflat.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 9 |  | inagswap.1 |  |-  ( ph -> X ( inA ` G ) <" A B C "> ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 | isinag |  |-  ( ph -> ( X ( inA ` G ) <" A B C "> <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) | 
						
							| 11 | 9 10 | mpbid |  |-  ( ph -> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) | 
						
							| 12 | 11 | simpld |  |-  ( ph -> ( A =/= B /\ C =/= B /\ X =/= B ) ) | 
						
							| 13 | 12 | simp2d |  |-  ( ph -> C =/= B ) | 
						
							| 14 | 12 | simp1d |  |-  ( ph -> A =/= B ) | 
						
							| 15 | 12 | simp3d |  |-  ( ph -> X =/= B ) | 
						
							| 16 | 13 14 15 | 3jca |  |-  ( ph -> ( C =/= B /\ A =/= B /\ X =/= B ) ) | 
						
							| 17 | 11 | simprd |  |-  ( ph -> E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) | 
						
							| 18 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 19 | 8 | 3ad2ant1 |  |-  ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> G e. TarskiG ) | 
						
							| 20 | 5 | 3ad2ant1 |  |-  ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> A e. P ) | 
						
							| 21 |  | simp2 |  |-  ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> x e. P ) | 
						
							| 22 | 7 | 3ad2ant1 |  |-  ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> C e. P ) | 
						
							| 23 |  | simp3 |  |-  ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> x e. ( A I C ) ) | 
						
							| 24 | 1 18 2 19 20 21 22 23 | tgbtwncom |  |-  ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> x e. ( C I A ) ) | 
						
							| 25 | 24 | 3expia |  |-  ( ( ph /\ x e. P ) -> ( x e. ( A I C ) -> x e. ( C I A ) ) ) | 
						
							| 26 | 25 | anim1d |  |-  ( ( ph /\ x e. P ) -> ( ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) -> ( x e. ( C I A ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) | 
						
							| 27 | 26 | reximdva |  |-  ( ph -> ( E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) -> E. x e. P ( x e. ( C I A ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) | 
						
							| 28 | 17 27 | mpd |  |-  ( ph -> E. x e. P ( x e. ( C I A ) /\ ( x = B \/ x ( K ` B ) X ) ) ) | 
						
							| 29 | 1 2 3 4 7 6 5 8 | isinag |  |-  ( ph -> ( X ( inA ` G ) <" C B A "> <-> ( ( C =/= B /\ A =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( C I A ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) | 
						
							| 30 | 16 28 29 | mpbir2and |  |-  ( ph -> X ( inA ` G ) <" C B A "> ) |