Step |
Hyp |
Ref |
Expression |
1 |
|
isinag.p |
|- P = ( Base ` G ) |
2 |
|
isinag.i |
|- I = ( Itv ` G ) |
3 |
|
isinag.k |
|- K = ( hlG ` G ) |
4 |
|
isinag.x |
|- ( ph -> X e. P ) |
5 |
|
isinag.a |
|- ( ph -> A e. P ) |
6 |
|
isinag.b |
|- ( ph -> B e. P ) |
7 |
|
isinag.c |
|- ( ph -> C e. P ) |
8 |
|
inagflat.g |
|- ( ph -> G e. TarskiG ) |
9 |
|
inagswap.1 |
|- ( ph -> X ( inA ` G ) <" A B C "> ) |
10 |
1 2 3 4 5 6 7 8
|
isinag |
|- ( ph -> ( X ( inA ` G ) <" A B C "> <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) |
11 |
9 10
|
mpbid |
|- ( ph -> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) |
12 |
11
|
simpld |
|- ( ph -> ( A =/= B /\ C =/= B /\ X =/= B ) ) |
13 |
12
|
simp2d |
|- ( ph -> C =/= B ) |
14 |
12
|
simp1d |
|- ( ph -> A =/= B ) |
15 |
12
|
simp3d |
|- ( ph -> X =/= B ) |
16 |
13 14 15
|
3jca |
|- ( ph -> ( C =/= B /\ A =/= B /\ X =/= B ) ) |
17 |
11
|
simprd |
|- ( ph -> E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) |
18 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
19 |
8
|
3ad2ant1 |
|- ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> G e. TarskiG ) |
20 |
5
|
3ad2ant1 |
|- ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> A e. P ) |
21 |
|
simp2 |
|- ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> x e. P ) |
22 |
7
|
3ad2ant1 |
|- ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> C e. P ) |
23 |
|
simp3 |
|- ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> x e. ( A I C ) ) |
24 |
1 18 2 19 20 21 22 23
|
tgbtwncom |
|- ( ( ph /\ x e. P /\ x e. ( A I C ) ) -> x e. ( C I A ) ) |
25 |
24
|
3expia |
|- ( ( ph /\ x e. P ) -> ( x e. ( A I C ) -> x e. ( C I A ) ) ) |
26 |
25
|
anim1d |
|- ( ( ph /\ x e. P ) -> ( ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) -> ( x e. ( C I A ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) |
27 |
26
|
reximdva |
|- ( ph -> ( E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) -> E. x e. P ( x e. ( C I A ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) |
28 |
17 27
|
mpd |
|- ( ph -> E. x e. P ( x e. ( C I A ) /\ ( x = B \/ x ( K ` B ) X ) ) ) |
29 |
1 2 3 4 7 6 5 8
|
isinag |
|- ( ph -> ( X ( inA ` G ) <" C B A "> <-> ( ( C =/= B /\ A =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( C I A ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) |
30 |
16 28 29
|
mpbir2and |
|- ( ph -> X ( inA ` G ) <" C B A "> ) |