Step |
Hyp |
Ref |
Expression |
1 |
|
isinag.p |
|- P = ( Base ` G ) |
2 |
|
isinag.i |
|- I = ( Itv ` G ) |
3 |
|
isinag.k |
|- K = ( hlG ` G ) |
4 |
|
isinag.x |
|- ( ph -> X e. P ) |
5 |
|
isinag.a |
|- ( ph -> A e. P ) |
6 |
|
isinag.b |
|- ( ph -> B e. P ) |
7 |
|
isinag.c |
|- ( ph -> C e. P ) |
8 |
|
inagflat.g |
|- ( ph -> G e. TarskiG ) |
9 |
|
inagswap.1 |
|- ( ph -> X ( inA ` G ) <" A B C "> ) |
10 |
1 2 3 4 5 6 7 8
|
isinag |
|- ( ph -> ( X ( inA ` G ) <" A B C "> <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) |
11 |
9 10
|
mpbid |
|- ( ph -> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) |
12 |
11
|
simpld |
|- ( ph -> ( A =/= B /\ C =/= B /\ X =/= B ) ) |
13 |
12
|
simp1d |
|- ( ph -> A =/= B ) |