Metamath Proof Explorer


Theorem inagne1

Description: Deduce inequality from the in-angle relation. (Contributed by Thierry Arnoux, 29-Oct-2021)

Ref Expression
Hypotheses isinag.p P = Base G
isinag.i I = Itv G
isinag.k K = hl 𝒢 G
isinag.x φ X P
isinag.a φ A P
isinag.b φ B P
isinag.c φ C P
inagflat.g φ G 𝒢 Tarski
inagswap.1 φ X 𝒢 G ⟨“ ABC ”⟩
Assertion inagne1 φ A B

Proof

Step Hyp Ref Expression
1 isinag.p P = Base G
2 isinag.i I = Itv G
3 isinag.k K = hl 𝒢 G
4 isinag.x φ X P
5 isinag.a φ A P
6 isinag.b φ B P
7 isinag.c φ C P
8 inagflat.g φ G 𝒢 Tarski
9 inagswap.1 φ X 𝒢 G ⟨“ ABC ”⟩
10 1 2 3 4 5 6 7 8 isinag φ X 𝒢 G ⟨“ ABC ”⟩ A B C B X B x P x A I C x = B x K B X
11 9 10 mpbid φ A B C B X B x P x A I C x = B x K B X
12 11 simpld φ A B C B X B
13 12 simp1d φ A B