Metamath Proof Explorer


Theorem inagswap

Description: Swap the order of the half lines delimiting the angle. Theorem 11.24 of Schwabhauser p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020)

Ref Expression
Hypotheses isinag.p P=BaseG
isinag.i I=ItvG
isinag.k K=hl𝒢G
isinag.x φXP
isinag.a φAP
isinag.b φBP
isinag.c φCP
inagflat.g φG𝒢Tarski
inagswap.1 φX𝒢G⟨“ABC”⟩
Assertion inagswap φX𝒢G⟨“CBA”⟩

Proof

Step Hyp Ref Expression
1 isinag.p P=BaseG
2 isinag.i I=ItvG
3 isinag.k K=hl𝒢G
4 isinag.x φXP
5 isinag.a φAP
6 isinag.b φBP
7 isinag.c φCP
8 inagflat.g φG𝒢Tarski
9 inagswap.1 φX𝒢G⟨“ABC”⟩
10 1 2 3 4 5 6 7 8 isinag φX𝒢G⟨“ABC”⟩ABCBXBxPxAICx=BxKBX
11 9 10 mpbid φABCBXBxPxAICx=BxKBX
12 11 simpld φABCBXB
13 12 simp2d φCB
14 12 simp1d φAB
15 12 simp3d φXB
16 13 14 15 3jca φCBABXB
17 11 simprd φxPxAICx=BxKBX
18 eqid distG=distG
19 8 3ad2ant1 φxPxAICG𝒢Tarski
20 5 3ad2ant1 φxPxAICAP
21 simp2 φxPxAICxP
22 7 3ad2ant1 φxPxAICCP
23 simp3 φxPxAICxAIC
24 1 18 2 19 20 21 22 23 tgbtwncom φxPxAICxCIA
25 24 3expia φxPxAICxCIA
26 25 anim1d φxPxAICx=BxKBXxCIAx=BxKBX
27 26 reximdva φxPxAICx=BxKBXxPxCIAx=BxKBX
28 17 27 mpd φxPxCIAx=BxKBX
29 1 2 3 4 7 6 5 8 isinag φX𝒢G⟨“CBA”⟩CBABXBxPxCIAx=BxKBX
30 16 28 29 mpbir2and φX𝒢G⟨“CBA”⟩