Metamath Proof Explorer


Theorem inagswap

Description: Swap the order of the half lines delimiting the angle. Theorem 11.24 of Schwabhauser p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020)

Ref Expression
Hypotheses isinag.p P = Base G
isinag.i I = Itv G
isinag.k K = hl 𝒢 G
isinag.x φ X P
isinag.a φ A P
isinag.b φ B P
isinag.c φ C P
inagflat.g φ G 𝒢 Tarski
inagswap.1 φ X 𝒢 G ⟨“ ABC ”⟩
Assertion inagswap φ X 𝒢 G ⟨“ CBA ”⟩

Proof

Step Hyp Ref Expression
1 isinag.p P = Base G
2 isinag.i I = Itv G
3 isinag.k K = hl 𝒢 G
4 isinag.x φ X P
5 isinag.a φ A P
6 isinag.b φ B P
7 isinag.c φ C P
8 inagflat.g φ G 𝒢 Tarski
9 inagswap.1 φ X 𝒢 G ⟨“ ABC ”⟩
10 1 2 3 4 5 6 7 8 isinag φ X 𝒢 G ⟨“ ABC ”⟩ A B C B X B x P x A I C x = B x K B X
11 9 10 mpbid φ A B C B X B x P x A I C x = B x K B X
12 11 simpld φ A B C B X B
13 12 simp2d φ C B
14 12 simp1d φ A B
15 12 simp3d φ X B
16 13 14 15 3jca φ C B A B X B
17 11 simprd φ x P x A I C x = B x K B X
18 eqid dist G = dist G
19 8 3ad2ant1 φ x P x A I C G 𝒢 Tarski
20 5 3ad2ant1 φ x P x A I C A P
21 simp2 φ x P x A I C x P
22 7 3ad2ant1 φ x P x A I C C P
23 simp3 φ x P x A I C x A I C
24 1 18 2 19 20 21 22 23 tgbtwncom φ x P x A I C x C I A
25 24 3expia φ x P x A I C x C I A
26 25 anim1d φ x P x A I C x = B x K B X x C I A x = B x K B X
27 26 reximdva φ x P x A I C x = B x K B X x P x C I A x = B x K B X
28 17 27 mpd φ x P x C I A x = B x K B X
29 1 2 3 4 7 6 5 8 isinag φ X 𝒢 G ⟨“ CBA ”⟩ C B A B X B x P x C I A x = B x K B X
30 16 28 29 mpbir2and φ X 𝒢 G ⟨“ CBA ”⟩