Description: Any point lies in a flat angle. (Contributed by Thierry Arnoux, 13-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinag.p | |- P = ( Base ` G ) |
|
| isinag.i | |- I = ( Itv ` G ) |
||
| isinag.k | |- K = ( hlG ` G ) |
||
| isinag.x | |- ( ph -> X e. P ) |
||
| isinag.a | |- ( ph -> A e. P ) |
||
| isinag.b | |- ( ph -> B e. P ) |
||
| isinag.c | |- ( ph -> C e. P ) |
||
| inagflat.g | |- ( ph -> G e. TarskiG ) |
||
| inagflat.x | |- ( ph -> X e. P ) |
||
| inagflat.1 | |- ( ph -> A =/= B ) |
||
| inagflat.2 | |- ( ph -> C =/= B ) |
||
| inagflat.3 | |- ( ph -> X =/= B ) |
||
| inagflat.4 | |- ( ph -> B e. ( A I C ) ) |
||
| Assertion | inagflat | |- ( ph -> X ( inA ` G ) <" A B C "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinag.p | |- P = ( Base ` G ) |
|
| 2 | isinag.i | |- I = ( Itv ` G ) |
|
| 3 | isinag.k | |- K = ( hlG ` G ) |
|
| 4 | isinag.x | |- ( ph -> X e. P ) |
|
| 5 | isinag.a | |- ( ph -> A e. P ) |
|
| 6 | isinag.b | |- ( ph -> B e. P ) |
|
| 7 | isinag.c | |- ( ph -> C e. P ) |
|
| 8 | inagflat.g | |- ( ph -> G e. TarskiG ) |
|
| 9 | inagflat.x | |- ( ph -> X e. P ) |
|
| 10 | inagflat.1 | |- ( ph -> A =/= B ) |
|
| 11 | inagflat.2 | |- ( ph -> C =/= B ) |
|
| 12 | inagflat.3 | |- ( ph -> X =/= B ) |
|
| 13 | inagflat.4 | |- ( ph -> B e. ( A I C ) ) |
|
| 14 | eqidd | |- ( ph -> B = B ) |
|
| 15 | 14 | orcd | |- ( ph -> ( B = B \/ B ( K ` B ) X ) ) |
| 16 | 1 2 3 4 5 6 7 8 6 10 11 12 13 15 | isinagd | |- ( ph -> X ( inA ` G ) <" A B C "> ) |