Metamath Proof Explorer


Theorem isinagd

Description: Sufficient conditions for in-angle relation, deduction version. (Contributed by Thierry Arnoux, 20-Oct-2020)

Ref Expression
Hypotheses isinag.p
|- P = ( Base ` G )
isinag.i
|- I = ( Itv ` G )
isinag.k
|- K = ( hlG ` G )
isinag.x
|- ( ph -> X e. P )
isinag.a
|- ( ph -> A e. P )
isinag.b
|- ( ph -> B e. P )
isinag.c
|- ( ph -> C e. P )
isinagd.g
|- ( ph -> G e. V )
isinagd.y
|- ( ph -> Y e. P )
isinagd.1
|- ( ph -> A =/= B )
isinagd.2
|- ( ph -> C =/= B )
isinagd.3
|- ( ph -> X =/= B )
isinagd.4
|- ( ph -> Y e. ( A I C ) )
isinagd.5
|- ( ph -> ( Y = B \/ Y ( K ` B ) X ) )
Assertion isinagd
|- ( ph -> X ( inA ` G ) <" A B C "> )

Proof

Step Hyp Ref Expression
1 isinag.p
 |-  P = ( Base ` G )
2 isinag.i
 |-  I = ( Itv ` G )
3 isinag.k
 |-  K = ( hlG ` G )
4 isinag.x
 |-  ( ph -> X e. P )
5 isinag.a
 |-  ( ph -> A e. P )
6 isinag.b
 |-  ( ph -> B e. P )
7 isinag.c
 |-  ( ph -> C e. P )
8 isinagd.g
 |-  ( ph -> G e. V )
9 isinagd.y
 |-  ( ph -> Y e. P )
10 isinagd.1
 |-  ( ph -> A =/= B )
11 isinagd.2
 |-  ( ph -> C =/= B )
12 isinagd.3
 |-  ( ph -> X =/= B )
13 isinagd.4
 |-  ( ph -> Y e. ( A I C ) )
14 isinagd.5
 |-  ( ph -> ( Y = B \/ Y ( K ` B ) X ) )
15 10 11 12 3jca
 |-  ( ph -> ( A =/= B /\ C =/= B /\ X =/= B ) )
16 simpr
 |-  ( ( ph /\ x = Y ) -> x = Y )
17 eqidd
 |-  ( ( ph /\ x = Y ) -> ( A I C ) = ( A I C ) )
18 16 17 eleq12d
 |-  ( ( ph /\ x = Y ) -> ( x e. ( A I C ) <-> Y e. ( A I C ) ) )
19 eqidd
 |-  ( ( ph /\ x = Y ) -> B = B )
20 16 19 eqeq12d
 |-  ( ( ph /\ x = Y ) -> ( x = B <-> Y = B ) )
21 16 breq1d
 |-  ( ( ph /\ x = Y ) -> ( x ( K ` B ) X <-> Y ( K ` B ) X ) )
22 20 21 orbi12d
 |-  ( ( ph /\ x = Y ) -> ( ( x = B \/ x ( K ` B ) X ) <-> ( Y = B \/ Y ( K ` B ) X ) ) )
23 18 22 anbi12d
 |-  ( ( ph /\ x = Y ) -> ( ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) <-> ( Y e. ( A I C ) /\ ( Y = B \/ Y ( K ` B ) X ) ) ) )
24 13 14 jca
 |-  ( ph -> ( Y e. ( A I C ) /\ ( Y = B \/ Y ( K ` B ) X ) ) )
25 9 23 24 rspcedvd
 |-  ( ph -> E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) )
26 15 25 jca
 |-  ( ph -> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) )
27 1 2 3 4 5 6 7 8 isinag
 |-  ( ph -> ( X ( inA ` G ) <" A B C "> <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) )
28 26 27 mpbird
 |-  ( ph -> X ( inA ` G ) <" A B C "> )