Step |
Hyp |
Ref |
Expression |
1 |
|
isinag.p |
|- P = ( Base ` G ) |
2 |
|
isinag.i |
|- I = ( Itv ` G ) |
3 |
|
isinag.k |
|- K = ( hlG ` G ) |
4 |
|
isinag.x |
|- ( ph -> X e. P ) |
5 |
|
isinag.a |
|- ( ph -> A e. P ) |
6 |
|
isinag.b |
|- ( ph -> B e. P ) |
7 |
|
isinag.c |
|- ( ph -> C e. P ) |
8 |
|
isinagd.g |
|- ( ph -> G e. V ) |
9 |
|
isinagd.y |
|- ( ph -> Y e. P ) |
10 |
|
isinagd.1 |
|- ( ph -> A =/= B ) |
11 |
|
isinagd.2 |
|- ( ph -> C =/= B ) |
12 |
|
isinagd.3 |
|- ( ph -> X =/= B ) |
13 |
|
isinagd.4 |
|- ( ph -> Y e. ( A I C ) ) |
14 |
|
isinagd.5 |
|- ( ph -> ( Y = B \/ Y ( K ` B ) X ) ) |
15 |
10 11 12
|
3jca |
|- ( ph -> ( A =/= B /\ C =/= B /\ X =/= B ) ) |
16 |
|
simpr |
|- ( ( ph /\ x = Y ) -> x = Y ) |
17 |
|
eqidd |
|- ( ( ph /\ x = Y ) -> ( A I C ) = ( A I C ) ) |
18 |
16 17
|
eleq12d |
|- ( ( ph /\ x = Y ) -> ( x e. ( A I C ) <-> Y e. ( A I C ) ) ) |
19 |
|
eqidd |
|- ( ( ph /\ x = Y ) -> B = B ) |
20 |
16 19
|
eqeq12d |
|- ( ( ph /\ x = Y ) -> ( x = B <-> Y = B ) ) |
21 |
16
|
breq1d |
|- ( ( ph /\ x = Y ) -> ( x ( K ` B ) X <-> Y ( K ` B ) X ) ) |
22 |
20 21
|
orbi12d |
|- ( ( ph /\ x = Y ) -> ( ( x = B \/ x ( K ` B ) X ) <-> ( Y = B \/ Y ( K ` B ) X ) ) ) |
23 |
18 22
|
anbi12d |
|- ( ( ph /\ x = Y ) -> ( ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) <-> ( Y e. ( A I C ) /\ ( Y = B \/ Y ( K ` B ) X ) ) ) ) |
24 |
13 14
|
jca |
|- ( ph -> ( Y e. ( A I C ) /\ ( Y = B \/ Y ( K ` B ) X ) ) ) |
25 |
9 23 24
|
rspcedvd |
|- ( ph -> E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) |
26 |
15 25
|
jca |
|- ( ph -> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) |
27 |
1 2 3 4 5 6 7 8
|
isinag |
|- ( ph -> ( X ( inA ` G ) <" A B C "> <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) |
28 |
26 27
|
mpbird |
|- ( ph -> X ( inA ` G ) <" A B C "> ) |