| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isinag.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | isinag.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | isinag.k |  |-  K = ( hlG ` G ) | 
						
							| 4 |  | isinag.x |  |-  ( ph -> X e. P ) | 
						
							| 5 |  | isinag.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | isinag.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | isinag.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | isinagd.g |  |-  ( ph -> G e. V ) | 
						
							| 9 |  | isinagd.y |  |-  ( ph -> Y e. P ) | 
						
							| 10 |  | isinagd.1 |  |-  ( ph -> A =/= B ) | 
						
							| 11 |  | isinagd.2 |  |-  ( ph -> C =/= B ) | 
						
							| 12 |  | isinagd.3 |  |-  ( ph -> X =/= B ) | 
						
							| 13 |  | isinagd.4 |  |-  ( ph -> Y e. ( A I C ) ) | 
						
							| 14 |  | isinagd.5 |  |-  ( ph -> ( Y = B \/ Y ( K ` B ) X ) ) | 
						
							| 15 | 10 11 12 | 3jca |  |-  ( ph -> ( A =/= B /\ C =/= B /\ X =/= B ) ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ x = Y ) -> x = Y ) | 
						
							| 17 |  | eqidd |  |-  ( ( ph /\ x = Y ) -> ( A I C ) = ( A I C ) ) | 
						
							| 18 | 16 17 | eleq12d |  |-  ( ( ph /\ x = Y ) -> ( x e. ( A I C ) <-> Y e. ( A I C ) ) ) | 
						
							| 19 |  | eqidd |  |-  ( ( ph /\ x = Y ) -> B = B ) | 
						
							| 20 | 16 19 | eqeq12d |  |-  ( ( ph /\ x = Y ) -> ( x = B <-> Y = B ) ) | 
						
							| 21 | 16 | breq1d |  |-  ( ( ph /\ x = Y ) -> ( x ( K ` B ) X <-> Y ( K ` B ) X ) ) | 
						
							| 22 | 20 21 | orbi12d |  |-  ( ( ph /\ x = Y ) -> ( ( x = B \/ x ( K ` B ) X ) <-> ( Y = B \/ Y ( K ` B ) X ) ) ) | 
						
							| 23 | 18 22 | anbi12d |  |-  ( ( ph /\ x = Y ) -> ( ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) <-> ( Y e. ( A I C ) /\ ( Y = B \/ Y ( K ` B ) X ) ) ) ) | 
						
							| 24 | 13 14 | jca |  |-  ( ph -> ( Y e. ( A I C ) /\ ( Y = B \/ Y ( K ` B ) X ) ) ) | 
						
							| 25 | 9 23 24 | rspcedvd |  |-  ( ph -> E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) | 
						
							| 26 | 15 25 | jca |  |-  ( ph -> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 | isinag |  |-  ( ph -> ( X ( inA ` G ) <" A B C "> <-> ( ( A =/= B /\ C =/= B /\ X =/= B ) /\ E. x e. P ( x e. ( A I C ) /\ ( x = B \/ x ( K ` B ) X ) ) ) ) ) | 
						
							| 28 | 26 27 | mpbird |  |-  ( ph -> X ( inA ` G ) <" A B C "> ) |