| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cinag | ⊢ inA | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vp | ⊢ 𝑝 | 
						
							| 4 |  | vt | ⊢ 𝑡 | 
						
							| 5 | 3 | cv | ⊢ 𝑝 | 
						
							| 6 |  | cbs | ⊢ Base | 
						
							| 7 | 1 | cv | ⊢ 𝑔 | 
						
							| 8 | 7 6 | cfv | ⊢ ( Base ‘ 𝑔 ) | 
						
							| 9 | 5 8 | wcel | ⊢ 𝑝  ∈  ( Base ‘ 𝑔 ) | 
						
							| 10 | 4 | cv | ⊢ 𝑡 | 
						
							| 11 |  | cmap | ⊢  ↑m | 
						
							| 12 |  | cc0 | ⊢ 0 | 
						
							| 13 |  | cfzo | ⊢ ..^ | 
						
							| 14 |  | c3 | ⊢ 3 | 
						
							| 15 | 12 14 13 | co | ⊢ ( 0 ..^ 3 ) | 
						
							| 16 | 8 15 11 | co | ⊢ ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) | 
						
							| 17 | 10 16 | wcel | ⊢ 𝑡  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) | 
						
							| 18 | 9 17 | wa | ⊢ ( 𝑝  ∈  ( Base ‘ 𝑔 )  ∧  𝑡  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) ) | 
						
							| 19 | 12 10 | cfv | ⊢ ( 𝑡 ‘ 0 ) | 
						
							| 20 |  | c1 | ⊢ 1 | 
						
							| 21 | 20 10 | cfv | ⊢ ( 𝑡 ‘ 1 ) | 
						
							| 22 | 19 21 | wne | ⊢ ( 𝑡 ‘ 0 )  ≠  ( 𝑡 ‘ 1 ) | 
						
							| 23 |  | c2 | ⊢ 2 | 
						
							| 24 | 23 10 | cfv | ⊢ ( 𝑡 ‘ 2 ) | 
						
							| 25 | 24 21 | wne | ⊢ ( 𝑡 ‘ 2 )  ≠  ( 𝑡 ‘ 1 ) | 
						
							| 26 | 5 21 | wne | ⊢ 𝑝  ≠  ( 𝑡 ‘ 1 ) | 
						
							| 27 | 22 25 26 | w3a | ⊢ ( ( 𝑡 ‘ 0 )  ≠  ( 𝑡 ‘ 1 )  ∧  ( 𝑡 ‘ 2 )  ≠  ( 𝑡 ‘ 1 )  ∧  𝑝  ≠  ( 𝑡 ‘ 1 ) ) | 
						
							| 28 |  | vx | ⊢ 𝑥 | 
						
							| 29 | 28 | cv | ⊢ 𝑥 | 
						
							| 30 |  | citv | ⊢ Itv | 
						
							| 31 | 7 30 | cfv | ⊢ ( Itv ‘ 𝑔 ) | 
						
							| 32 | 19 24 31 | co | ⊢ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) | 
						
							| 33 | 29 32 | wcel | ⊢ 𝑥  ∈  ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) | 
						
							| 34 | 29 21 | wceq | ⊢ 𝑥  =  ( 𝑡 ‘ 1 ) | 
						
							| 35 |  | chlg | ⊢ hlG | 
						
							| 36 | 7 35 | cfv | ⊢ ( hlG ‘ 𝑔 ) | 
						
							| 37 | 21 36 | cfv | ⊢ ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) | 
						
							| 38 | 29 5 37 | wbr | ⊢ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 | 
						
							| 39 | 34 38 | wo | ⊢ ( 𝑥  =  ( 𝑡 ‘ 1 )  ∨  𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) | 
						
							| 40 | 33 39 | wa | ⊢ ( 𝑥  ∈  ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) )  ∧  ( 𝑥  =  ( 𝑡 ‘ 1 )  ∨  𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) | 
						
							| 41 | 40 28 8 | wrex | ⊢ ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥  ∈  ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) )  ∧  ( 𝑥  =  ( 𝑡 ‘ 1 )  ∨  𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) | 
						
							| 42 | 27 41 | wa | ⊢ ( ( ( 𝑡 ‘ 0 )  ≠  ( 𝑡 ‘ 1 )  ∧  ( 𝑡 ‘ 2 )  ≠  ( 𝑡 ‘ 1 )  ∧  𝑝  ≠  ( 𝑡 ‘ 1 ) )  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥  ∈  ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) )  ∧  ( 𝑥  =  ( 𝑡 ‘ 1 )  ∨  𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) | 
						
							| 43 | 18 42 | wa | ⊢ ( ( 𝑝  ∈  ( Base ‘ 𝑔 )  ∧  𝑡  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) )  ∧  ( ( ( 𝑡 ‘ 0 )  ≠  ( 𝑡 ‘ 1 )  ∧  ( 𝑡 ‘ 2 )  ≠  ( 𝑡 ‘ 1 )  ∧  𝑝  ≠  ( 𝑡 ‘ 1 ) )  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥  ∈  ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) )  ∧  ( 𝑥  =  ( 𝑡 ‘ 1 )  ∨  𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) | 
						
							| 44 | 43 3 4 | copab | ⊢ { 〈 𝑝 ,  𝑡 〉  ∣  ( ( 𝑝  ∈  ( Base ‘ 𝑔 )  ∧  𝑡  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) )  ∧  ( ( ( 𝑡 ‘ 0 )  ≠  ( 𝑡 ‘ 1 )  ∧  ( 𝑡 ‘ 2 )  ≠  ( 𝑡 ‘ 1 )  ∧  𝑝  ≠  ( 𝑡 ‘ 1 ) )  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥  ∈  ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) )  ∧  ( 𝑥  =  ( 𝑡 ‘ 1 )  ∨  𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) } | 
						
							| 45 | 1 2 44 | cmpt | ⊢ ( 𝑔  ∈  V  ↦  { 〈 𝑝 ,  𝑡 〉  ∣  ( ( 𝑝  ∈  ( Base ‘ 𝑔 )  ∧  𝑡  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) )  ∧  ( ( ( 𝑡 ‘ 0 )  ≠  ( 𝑡 ‘ 1 )  ∧  ( 𝑡 ‘ 2 )  ≠  ( 𝑡 ‘ 1 )  ∧  𝑝  ≠  ( 𝑡 ‘ 1 ) )  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥  ∈  ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) )  ∧  ( 𝑥  =  ( 𝑡 ‘ 1 )  ∨  𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) } ) | 
						
							| 46 | 0 45 | wceq | ⊢ inA  =  ( 𝑔  ∈  V  ↦  { 〈 𝑝 ,  𝑡 〉  ∣  ( ( 𝑝  ∈  ( Base ‘ 𝑔 )  ∧  𝑡  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) )  ∧  ( ( ( 𝑡 ‘ 0 )  ≠  ( 𝑡 ‘ 1 )  ∧  ( 𝑡 ‘ 2 )  ≠  ( 𝑡 ‘ 1 )  ∧  𝑝  ≠  ( 𝑡 ‘ 1 ) )  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥  ∈  ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) )  ∧  ( 𝑥  =  ( 𝑡 ‘ 1 )  ∨  𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) } ) |