Step |
Hyp |
Ref |
Expression |
0 |
|
cinag |
⊢ inA |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vp |
⊢ 𝑝 |
4 |
|
vt |
⊢ 𝑡 |
5 |
3
|
cv |
⊢ 𝑝 |
6 |
|
cbs |
⊢ Base |
7 |
1
|
cv |
⊢ 𝑔 |
8 |
7 6
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
9 |
5 8
|
wcel |
⊢ 𝑝 ∈ ( Base ‘ 𝑔 ) |
10 |
4
|
cv |
⊢ 𝑡 |
11 |
|
cmap |
⊢ ↑m |
12 |
|
cc0 |
⊢ 0 |
13 |
|
cfzo |
⊢ ..^ |
14 |
|
c3 |
⊢ 3 |
15 |
12 14 13
|
co |
⊢ ( 0 ..^ 3 ) |
16 |
8 15 11
|
co |
⊢ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) |
17 |
10 16
|
wcel |
⊢ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) |
18 |
9 17
|
wa |
⊢ ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) |
19 |
12 10
|
cfv |
⊢ ( 𝑡 ‘ 0 ) |
20 |
|
c1 |
⊢ 1 |
21 |
20 10
|
cfv |
⊢ ( 𝑡 ‘ 1 ) |
22 |
19 21
|
wne |
⊢ ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) |
23 |
|
c2 |
⊢ 2 |
24 |
23 10
|
cfv |
⊢ ( 𝑡 ‘ 2 ) |
25 |
24 21
|
wne |
⊢ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) |
26 |
5 21
|
wne |
⊢ 𝑝 ≠ ( 𝑡 ‘ 1 ) |
27 |
22 25 26
|
w3a |
⊢ ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) |
28 |
|
vx |
⊢ 𝑥 |
29 |
28
|
cv |
⊢ 𝑥 |
30 |
|
citv |
⊢ Itv |
31 |
7 30
|
cfv |
⊢ ( Itv ‘ 𝑔 ) |
32 |
19 24 31
|
co |
⊢ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) |
33 |
29 32
|
wcel |
⊢ 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) |
34 |
29 21
|
wceq |
⊢ 𝑥 = ( 𝑡 ‘ 1 ) |
35 |
|
chlg |
⊢ hlG |
36 |
7 35
|
cfv |
⊢ ( hlG ‘ 𝑔 ) |
37 |
21 36
|
cfv |
⊢ ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) |
38 |
29 5 37
|
wbr |
⊢ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 |
39 |
34 38
|
wo |
⊢ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) |
40 |
33 39
|
wa |
⊢ ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) |
41 |
40 28 8
|
wrex |
⊢ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) |
42 |
27 41
|
wa |
⊢ ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) |
43 |
18 42
|
wa |
⊢ ( ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) |
44 |
43 3 4
|
copab |
⊢ { 〈 𝑝 , 𝑡 〉 ∣ ( ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) } |
45 |
1 2 44
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 〈 𝑝 , 𝑡 〉 ∣ ( ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) } ) |
46 |
0 45
|
wceq |
⊢ inA = ( 𝑔 ∈ V ↦ { 〈 𝑝 , 𝑡 〉 ∣ ( ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) } ) |