Metamath Proof Explorer


Definition df-inag

Description: Definition of the geometrical "in angle" relation. (Contributed by Thierry Arnoux, 15-Aug-2020)

Ref Expression
Assertion df-inag inA = ( 𝑔 ∈ V ↦ { ⟨ 𝑝 , 𝑡 ⟩ ∣ ( ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinag inA
1 vg 𝑔
2 cvv V
3 vp 𝑝
4 vt 𝑡
5 3 cv 𝑝
6 cbs Base
7 1 cv 𝑔
8 7 6 cfv ( Base ‘ 𝑔 )
9 5 8 wcel 𝑝 ∈ ( Base ‘ 𝑔 )
10 4 cv 𝑡
11 cmap m
12 cc0 0
13 cfzo ..^
14 c3 3
15 12 14 13 co ( 0 ..^ 3 )
16 8 15 11 co ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) )
17 10 16 wcel 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) )
18 9 17 wa ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) )
19 12 10 cfv ( 𝑡 ‘ 0 )
20 c1 1
21 20 10 cfv ( 𝑡 ‘ 1 )
22 19 21 wne ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 )
23 c2 2
24 23 10 cfv ( 𝑡 ‘ 2 )
25 24 21 wne ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 )
26 5 21 wne 𝑝 ≠ ( 𝑡 ‘ 1 )
27 22 25 26 w3a ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) )
28 vx 𝑥
29 28 cv 𝑥
30 citv Itv
31 7 30 cfv ( Itv ‘ 𝑔 )
32 19 24 31 co ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) )
33 29 32 wcel 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) )
34 29 21 wceq 𝑥 = ( 𝑡 ‘ 1 )
35 chlg hlG
36 7 35 cfv ( hlG ‘ 𝑔 )
37 21 36 cfv ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) )
38 29 5 37 wbr 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝
39 34 38 wo ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 )
40 33 39 wa ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) )
41 40 28 8 wrex 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) )
42 27 41 wa ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) )
43 18 42 wa ( ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) )
44 43 3 4 copab { ⟨ 𝑝 , 𝑡 ⟩ ∣ ( ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) }
45 1 2 44 cmpt ( 𝑔 ∈ V ↦ { ⟨ 𝑝 , 𝑡 ⟩ ∣ ( ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) } )
46 0 45 wceq inA = ( 𝑔 ∈ V ↦ { ⟨ 𝑝 , 𝑡 ⟩ ∣ ( ( 𝑝 ∈ ( Base ‘ 𝑔 ) ∧ 𝑡 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ( ( ( 𝑡 ‘ 0 ) ≠ ( 𝑡 ‘ 1 ) ∧ ( 𝑡 ‘ 2 ) ≠ ( 𝑡 ‘ 1 ) ∧ 𝑝 ≠ ( 𝑡 ‘ 1 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ∈ ( ( 𝑡 ‘ 0 ) ( Itv ‘ 𝑔 ) ( 𝑡 ‘ 2 ) ) ∧ ( 𝑥 = ( 𝑡 ‘ 1 ) ∨ 𝑥 ( ( hlG ‘ 𝑔 ) ‘ ( 𝑡 ‘ 1 ) ) 𝑝 ) ) ) ) } )