| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indfval |
|- ( ( O e. V /\ A C_ O /\ X e. O ) -> ( ( ( _Ind ` O ) ` A ) ` X ) = if ( X e. A , 1 , 0 ) ) |
| 2 |
1
|
eqeq1d |
|- ( ( O e. V /\ A C_ O /\ X e. O ) -> ( ( ( ( _Ind ` O ) ` A ) ` X ) = 1 <-> if ( X e. A , 1 , 0 ) = 1 ) ) |
| 3 |
|
eqid |
|- 1 = 1 |
| 4 |
3
|
biantru |
|- ( X e. A <-> ( X e. A /\ 1 = 1 ) ) |
| 5 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 6 |
5
|
neii |
|- -. 1 = 0 |
| 7 |
6
|
biorfri |
|- ( ( X e. A /\ 1 = 1 ) <-> ( ( X e. A /\ 1 = 1 ) \/ 1 = 0 ) ) |
| 8 |
6
|
bianfi |
|- ( 1 = 0 <-> ( -. X e. A /\ 1 = 0 ) ) |
| 9 |
8
|
orbi2i |
|- ( ( ( X e. A /\ 1 = 1 ) \/ 1 = 0 ) <-> ( ( X e. A /\ 1 = 1 ) \/ ( -. X e. A /\ 1 = 0 ) ) ) |
| 10 |
4 7 9
|
3bitri |
|- ( X e. A <-> ( ( X e. A /\ 1 = 1 ) \/ ( -. X e. A /\ 1 = 0 ) ) ) |
| 11 |
|
eqif |
|- ( 1 = if ( X e. A , 1 , 0 ) <-> ( ( X e. A /\ 1 = 1 ) \/ ( -. X e. A /\ 1 = 0 ) ) ) |
| 12 |
|
eqcom |
|- ( 1 = if ( X e. A , 1 , 0 ) <-> if ( X e. A , 1 , 0 ) = 1 ) |
| 13 |
10 11 12
|
3bitr2ri |
|- ( if ( X e. A , 1 , 0 ) = 1 <-> X e. A ) |
| 14 |
2 13
|
bitrdi |
|- ( ( O e. V /\ A C_ O /\ X e. O ) -> ( ( ( ( _Ind ` O ) ` A ) ` X ) = 1 <-> X e. A ) ) |