Metamath Proof Explorer


Theorem inf3lem7

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. In the proof, we invoke the Axiom of Replacement in the form of f1dmex . (Contributed by NM, 29-Oct-1996) (Proof shortened by Mario Carneiro, 19-Jan-2013)

Ref Expression
Hypotheses inf3lem.1
|- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } )
inf3lem.2
|- F = ( rec ( G , (/) ) |` _om )
inf3lem.3
|- A e. _V
inf3lem.4
|- B e. _V
Assertion inf3lem7
|- ( ( x =/= (/) /\ x C_ U. x ) -> _om e. _V )

Proof

Step Hyp Ref Expression
1 inf3lem.1
 |-  G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } )
2 inf3lem.2
 |-  F = ( rec ( G , (/) ) |` _om )
3 inf3lem.3
 |-  A e. _V
4 inf3lem.4
 |-  B e. _V
5 1 2 3 4 inf3lem6
 |-  ( ( x =/= (/) /\ x C_ U. x ) -> F : _om -1-1-> ~P x )
6 vpwex
 |-  ~P x e. _V
7 f1dmex
 |-  ( ( F : _om -1-1-> ~P x /\ ~P x e. _V ) -> _om e. _V )
8 5 6 7 sylancl
 |-  ( ( x =/= (/) /\ x C_ U. x ) -> _om e. _V )