Description: The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006) (Revised by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxrcl | |- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso | |- < Or RR* |
|
| 2 | 1 | a1i | |- ( A C_ RR* -> < Or RR* ) |
| 3 | xrinfmss | |- ( A C_ RR* -> E. x e. RR* ( A. y e. A -. y < x /\ A. y e. RR* ( x < y -> E. z e. A z < y ) ) ) |
|
| 4 | 2 3 | infcl | |- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |