Metamath Proof Explorer


Theorem infxrcl

Description: The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infxrcl A*supA*<*

Proof

Step Hyp Ref Expression
1 xrltso <Or*
2 1 a1i A*<Or*
3 xrinfmss A*x*yA¬y<xy*x<yzAz<y
4 2 3 infcl A*supA*<*